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QCQP

Quadratically constrained quadratic program:

min x"Cyx
xeC”

s.t. XHClx S bl’ [ = 1,...,L

« (C;:n X n Hermitian matrix

i bl = R

 Homogeneous QCQP : all monomials are of degree 2
e OPF can be formulated as (nonconvex) QCQP
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QCQP

Equivalent problem

Using xHClx = tr (ClxxH), this is equivalent to:

XeISg’},IxIéC” u (COX)
s.t. tr(ClX) < b, [=1,..,L
X = xxM

« Any psd rank-1 matrix X € S"”*" has a spectral decomposition X = xx for some x € C"
e X is unique up to a rotation, i.e., x satisfies X = xxH x e/ for anyd € R
» Therefore can eliminate x

Steven Low SDR  Semidefinite relaxation of QCQP



QCQP

Equivalent problem
Eliminating x —> minimization over psd matrices X:

)r(rélgr’ll tr (COX )

s.t. tr (CIX) < bl’ [ = 1,...,L
X > 0, rank(X) = 1

. tr (CZX) < bjislinearin X
e« X >0isconvexinX

e rank(X) = 1 is nonconvex in X Removing rank constraint yields SDP relaxation
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SDP relaxation

SDP relaxation of QCQP

)I(Iélg% tr (COX )

s.t. tr(ClX) < b [=1,.,L
X >0

* This is a standard semidefinite program which is a convex problem
» Solution strategy:

» Solve SDP for an optimal solution XOPt
H
o | rank<X0pt> = 1, then x°Pt & C” from spectral decomposition from X°OPt = xOPt <xopt>

o If rank(XOpt> > 1, then, in general, no feasible solution of QCQP can be directly obtained
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SDP relaxation

SDP relaxation of QCQP

)I(IélgI}l tr (COX )

st.  tr(CX) < b, [=1,..,L
X >0

» Even though SDP is convex, for large networks, it is still computationally impractical
* How to exploit sparsity of large networks to reduce computational burden?

Ans: partial matrices and completions !
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Partial matrices

A QCQP instance specified by (Cy, C;, b;, [ = 1,..., L) induces graph F' := (N, E)
« N:nnodes (where C; € C™)
. ECNXN:mlinks (j,k) € E iff 31 € {0,1,...,L} st [Cly = [CI;# 0

A partial matrix Xy is a set of n + 2m complex numbers defined on F' = (N, E)
X = { Xl Xl [Xely : JEN.GROEE |

« Xy can be interpreted as matrix with entries partially specified, or a partial matrix
« If F'is complete graph, then X is full n X n matrix

A completion X of X is a full n X n matrix that agrees with X on graph F
[X]j' — [XF]J“, [X]jk — [XF]jk7 [X]kj — [XF]kj
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Partial matrices

If g is clique (fully connected subgraph) of F, then X (q) is fully specified principal submatrix of
Xrong:

[X(C])]jj = [XF]]", [X(C])]jk = [XF]jka [X(Q)]kj = [XF]kja
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Hermitian, psd, rank-1, trace

Partial matrix
A partial matrix X is
« Hermitian (X = XF) if [Xply; = [XF];
e psd (X > 0) if Xz is Hermitian and Xz(q) > O for all cliques g of I

« rank-1 if rank (XF(q)) = 1 for all cliques g of F
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Hermitian, psd, rank-1, trace

Partial matrix
A partial matrix X is

« Hermitian (X = XF) if [Xply; = [XF];I{

psd (Xr > 0) if Xp is Hermitian and X(g) > O for all cliques g of F

rank-1 if rank (XF(q)) = 1 for all cliques g of F

2 X2 psd if Xp(j,k)ispsdforall (j,k) € E

2 X 2 rank-1 if Xg(j, k) is rank-1forall (j,k) € E
Xel [Xe,
Xl [XFl
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Hermitian, psd, rank-1, trace
Partial matrix

For partial matrix Xy

tr (CXp) := Z [C]; [XF]; + Z <[Cl]jk [Xeliy + 1[Gy [XF]jk>
JjEN (J.k)EE

If both C; and X are Hermitian, then tr (CIXF) is real:

tr(CXp) = D) IC1;[Xely + 2 ) Re<[cz]jk[XF]kj)

JEN (J,k)EE
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Chordal graph & extensions

F'is a chordal graph if

 Either F has no cycles, or
« All minimal cycles (ones without chords) are of length 3

A chordal extension c(F’) of F'is a chordal graph that contains F
e X

c(F) 1S @ chordal extension of X

Every graph has a (generally nonunique) chordal extension

« Complete supergraph of F'is a c(F)

Theorem [Grone et al 1984]: every psd partial matrix has a psd completion iff underlying graph is
chordal

*  We will extend this to psd rank-1 submatrices

Steven Low SDR  Semidefinite relaxation of QCQP



Partial matrix & chordal extensions
Example

<t

X1 KXo X3 X1 X X3 _ X1 X2 X3
X1 Xy Xas Xor| Xop Koz Xog  Xos Xo1| Xop Xog Xas
Wrp = | X3 X33 X3 Weary = | X3 X3y X3 X3y Xas || Weemy = | Xa1| Xap | Xag Xy | Xss
Xgz Xgg Xys Xgp Xyz Xyg Xys Xyz Kag Xys
| Xso Xsq Xss | | Xsp Xs3 X5y Xssl | | xsz@ Xsy | Xss) |
2 cliques W, (x(q) 3 cliques W, (x(q)
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Rank-1 characterization

Equivalent conditions

C1: X > 0, rank(X) = 1
C3: Xe(j, k) = 0, rank(Xz(j, k) = 1, (j,ky e E
Z Z[Xply = 0 mod 27 cycle condition
(j,k)ec
Theorem

Suppose X;; > 0, [XC(F)]J'J' > 0, [XF]]_J_ > (. Then C1 < C2 < C3.
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Feasible sets

Feasible set of QCQP
V= {xeC |xHClx <b,l=1,...,L}

psd rank-1 matrices X

X = { X e §" | Xsatisfies tr(C;X) < b, C1 }
psd rank-1 chordal extensions X,

XC(F) = { XC(F) | XC(F) satisfies tr (CZXC(F)) < bl’ C2 }

psd rank-1 partial matrices X

Xp = { Xp | Xp satisfies tr (CIXF) <b, C3}
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Feasible sets
Equivalence

Corollary

Fix any connected F. Any partial matrix X,z € XC(F) or X € X has a unique psd rank-1
completion X € X

Definition: Two sets A and B are equivalent (A = B) if there is a bijection between them

Theorem
V= X=X pm = Xp

Implication: A feasible x € V can be recovered from any partial matrix Xz € X g or

X € X through spectral decomposition (but there is a simpler way to compute x € V than
completion)
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Equivalent problems

QCQP

min  x"Cyx subject to xeV
xeC"

is equivalent to min over matrices and partial matrices:

min x"Cyx subject to X e X
X

A

whete X = { X, X, X |

Implications:
Instead of solving for X € X, solve for X, () € X () or Xp € X which are much smaller

for large sparse networks
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Equivalent problems

QCQP

min  x"Cyx subject to xeV
xeC"

is equivalent to min over matrices and partial matrices:

min x"Cyx subject to X e X
X

A

whete X = { X, X, X |

Computational challenges remain:
X, Xy Xp are all nonconvex
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Semidefinite relaxations

Convex supersets
X*:= {XeS"| Xpsatisfies tr(C;X) < b, X > 0}

XTI = {Xp) | Xpsatisfies tr (CZXC(F)> < b, X, =0}

Xt = {Xp | Xpsatisfies tr (C;Xr) < by, Xp(j, k) > 0, (j, k) € E}

Semidefinite relaxations:

QCQP-sdp : min C (XF> s.t. XeXt most complex
X
QCQP-ch : min C (XF) s.t. X € X:(F)
Xc(F)
QCQP-socp : min C (XF) s.t. Xr € X;E simplest
X
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Semidefinite relaxations
Solution recovery

If a feasible / optimal solution X of semidefinite relaxation lies in X, X ), or X, then can
recover feasible / optimal x € V of QCQP

Recovery procedure: given X, € X,

1. Set | x| := [XF]U and Zx, to arbitrary value

2. Forj=1,...,n,

glo= Il ey =2V = Y 2K,

(i.k)EP;
where IF’j : path from bus 1 to bus j in an arbitrary spanning tree rooted at bus 1
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Semidefinite relaxations

Convex supersets
X*:= {XeS"| Xpsatisfies tr(C;X) < b, X > 0}

XTI = {Xp) | Xpsatisfies tr (CZXC(F)> < b, X, =0}

Xt = {Xp | Xpsatisfies tr (C;Xr) < by, Xp(j, k) > 0, (j, k) € E}

Semidefinite relaxations:

QCQP-sdp : min C (XF> s.t. XeXt most complex
X
QCQP-ch : min C (XF) s.t. X € X:(F)
Xc(F)
QCQP-socp : min C (XF) s.t. Xr € X;E simplest
X
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Tightness

Definition

1. A is an effective subset of B(A C B) if givenanya € A, 3 b € B with same cost
Cy(a) = Cg(b)

2. Aissimilarto BA ~B)ifAC BandBC A
Theorem [Tightness]
. VE X" =~ X p EXG
. f Fisatree, then VI X ~ X7 ) ~ XF

Corollary [Optimal values]
. cacap > Csdp _ Cch > (SOCp

. If Fis a tree, then C9€AP > ¢sdp — ¢ch — ¢socp
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Semidefinite relaxations

Implications

1. Radial networks: Solve QCQP-socp
« Simplest computationally
« Same tightness as QCQP-ch and QCQP-SDP

2. Meshed networks: Solve QCQP-ch or QCQP-socp
» QCQP-ch strictly tighter than QCQP-socp, and same tightness as QCQP-sdp

* QCQP-ch can be orders of magnitude simpler computationally than QCQP-sdp for large sparse
networks

 QCQP-ch is as complex as QCQP-sdp in the worst case
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OPF as QCQP

Recall
min  VAC,V
VECN+1
s.t. pjmin < ftr (CD]-VVH> < P jEN
gmn < (‘PJ-VVH> < g ieN
pmin < g (J-VVH> < pmax, ieN
J J J abbreviated as:
. - , tr (CVVH) <b,l=1,..., L
tr<ijVVH> < IR, (j.k) €E (GVV7) <h
tr<17kjva> < Tmex (k) €E
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Constraints

Given V € CN*1, define partial matrix W, by
[(Wel; == 1ViI°, jEN
Wl = VVi' = Welyp  GHEE

Constraints in terms of W,
s w(ow) <

. max abbreviated as:

s o (‘]J'WG> < Y tr (CWg) <b, l=1,..,L
tr<ijWG> < L™
tr (ijWG> <
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OPF and relaxations

OPF as QCQP

min Cy(V) st tr(CVVH)<b, I=1,..,L
%

Semidefinite relaxations:

OPF-sdp : min  Cy(Wy)
W€§N+l

OPF-ch : min Cy(W;;)
WC(G)

OPF-socp : min Cy(Wy)
WG

Steven Low SDR  Application to OPF

s.t.

s.t.

s.t.

tr(CW) < b, 1

IA

r(CWg)) < by |

tr (CWg) < by, |

L,

W >0
WC(G)EO

We(,k) = 0, (j,k) €E



Exact relaxation

Definition
1. OPF-sdp is exact if every optimal solution WSdlo of OPF-sdp is psd rank-1

2. OPF-ch is exact if every optimal solution Wf(g) of OPF-ch is psd rank-1

3. OPF-socp is exact if every optimal solution W(S’;OCp of OPF-docp
e is2 X 2 psdrank-1, i.e., W(S;OCp(j, k) are psd rank-1 for all (j, k) € E, and

satisfies cycle condition, i.e., Z L[WCS;OCp]jk = 0 mod 2z
(J,k)Ec
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QCQP and SOCP relaxation

QCQP:

min x"Cyx
xeC”

s.t. XHClx S bl’ [ = 1,...,L

SOCP relaxation:

n)lfiGn tr (COXG>

s.t. tr<ClXG) S bl’ [ = 1,...,L
Xc(1,k) = 0, (j,k)€EE

« C;:n X nHermitian matrix, b, € R
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Sufficient condition

C13.1: , is positive definite
C13.2: for every (J, k) € E, Elajk s.t. £ [Cl]jk e [al-j, a;; + n] foralll=0,...,L

Theorem

Suppose G is a tree and C13.2 holds. Then
1 Copt — (Socp

2. An optimal solution of QCQP can be recovered from every optimal solution of its SOCP
relaxation

An optimal solution of SOCP relaxation may not be 2 X 2 rank-1
when optimal solutions of SOCP relaxation are nonunique

Steven Low SDR  Exactness: linear separability



Sufficient condition

C13.1: , is positive definite

C13.2: for every (j, k) € E, Jay s.t. A[Cl]jk € [a, a;+ a] foralll=0,...,L

Corollary

Suppose G is a tree and both C13.1 and C13.2 hold. Then SOCP relaxation is exact, i.e., every
optimal solution W(S;OCp is 2 X 2 psd rank-1

« Cycle condition is vacuous since G is a tree

Steven Low SDR  Exactness: linear separability



Application to OPF

Recall OPF as QCQP

min VG,V
VECN+1
st. p™Mt < tr ((DjVVH> < p™, jEN
gmn < (‘PJ-VVH> < gmex ieN
< (V)< e, jeN
. _ abbreviated as:
tr<ijVVH> < ™, (j,k) € E tr(CGVVH) <b,1=1,...,L
tr<?kjva> < Tmex (k) €E
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Application to OPF

Exactness condition

Corollary

Suppose G is a tree and both C13.1 and
the diagram hold.

Then SOCP relaxation is exact

lower bounds

-], ON P24 P>

upper bounds

on p;sq;sPi-9k [q)k]jk
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A

Exactness condition: small angle difference
» Sufficient condition
e 2-bus example

5. Condition for global optimality
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Assumptions

Assume
1. Voltage magnitudes | V;| are fixed
2. Reactive powers are ignored

3. Shunt admittances are zero y]?}g = y,’;? =0
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OPF formulation

min  C(p)
p,P.0
s.t. pjmin <p; < pjmax, jEN
(9J;]£1in < ‘9jk < (9;]?“, (j,k) e E constraints on line flows, line losses, or stability
pj = Z ij, ] [ N nodal power balance
k:k~j

ij = gix — & COS ij — by sin ij, (J, k) € E power flow equation (polar form)
0. . ) .
where V; = | V;[ ™ with | V;| ;== 1 and 0 := 6, — 6,

Eliminate P and 6,
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OPF formulation

Define injection region

-

peR" | p= Z <gjk — 81 Cos O — ijinejk>’ 0, 20 < O
k:k~j

[FDQ =

N\

L

[FDp = {p€ R”lp.ﬁpjﬁﬁj,jEN}
—J

OPF: min C(p) s.t. peEPNP,
p

SOCP relaxation: min C(p) s.t. p € conv (Pg) NP,
p

Definition: SOCP relaxation is exact if every optimal solution lies in Py N [P’p
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Pareto front

P

J

Definitions

A pointx € A C R" is a Pareto optimal point in
A if there does not exist another X" € A such that

e« x' < x, and

- X; < x; for at least one j

" The Pareto front of A:
R  — O(A) := {all Parento optimal points}

Pareto front
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Sufficient condition

C13.3: C(p) is strictly increasing in each p;

. 1 bjk . 1 _b]k
C13.4:forevery (j,k) € E, tan™' — < 9;,?1“ < Gjr,?ax <tanw ——
Ejk 8jk
Theorem
Suppose G is a tree and C13.3, C13.4 hold. Then
1. PpnP, = O(conv(Py) N ﬂ:Dp) feasible set is Pareto front of its relaxation

2. SOCP relaxation is exact
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Geometric insight

2-bus network

For each line (j, k) € E, line flows P := (ij, ij> and angle differences 6 := 0; — 0, satisfy

cos 6 —8jik ~Dj
, where A =
sin 0y, -8 b

1. P traces out an ellipse in R? as ij ranges over [—, 7].
Hence feasible set (subset of ellipse) is noncovex.

2. C13.4 restricts P4 to lower half of ellipse

Steven Low SDR  Exactness: small angle




Geometric insight

2-bus network

For each line (j, k) € E, line flows P := (ij, ij> and angle differences 6 := 0; — 0, satisfy

cos 0y —8jk —Dj
P—gy1 = Al . / where A := ’ !

1. P traces out an ellipse in R? as (9jk ranges over [—, 7].
Hence feasible set (subset of ellipse) is noncovex.

2. C13.4 restricts P4 to lower half of ellipse
Pareto front (p ,Bk)

3. C13.3 implies Pareto front of relaxed feasible set coincides

pp,)

With feaSi ble Set! i - e' Iy relaxation iS exaCt (a) Exact relaxation with constraint (b) Inexact relaxation with constraint
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Outline

1. Relaxation of QCQP
Application to OPF
Exactness condition: linear separability

Exactness condition: small angle difference

a &~ W b

Condition for global optimality
« Sufficient condition
* Application to OPF
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No spurious local optima

minimize  f(x) f : continuous, convex
T
subject to x € X X :compact, nonconvex
Convex relaxation: minimize / (33)
T

subject to z € X. X :compact, convex, X € £ € K"




No spurious local optima

minimize f(x) f : continuous, convex
e
subject to x € X X :compact, nonconvex
Convex relaxation: minixmize f(z)
subject to z € X. X:compact, convex, X € X € K"

Relaxation (2) is exact if there exists optimal solution of (2)
that is optimal for (1)

Key result [zhou 2022]: Lyapunov-like conditions for
* Relaxation (2) is exact; and
* Any local optimum of (1) is globally optimal



No spurious local optima

Definition: A path from x € X\ X to X is a continuous
function h,:[0,1] -» X such that h,(0) = x and h,(1) € X

Lemma [Zhou 2022]
(2) is exact & vx € X \ X there is a path h, from x to X such that

* f(h,(t)) nonincreasing in t

© f(he(1)) < f(hye(0))



No spurious local optima

Definition: A Lyapunov-like function is a continuous
function V: X - R, such that

=0 x €X
V(x){>0 x€X\ X

V(x)




No spurious local optima

Standard Lyapunov function
B Dynamical system: y = f(y(t))
m Global asymptotic stability: y(t) - y*
W Stability certificate: Lyapunov function V(y) s.t.
1. Viy)>0ify=+y*, =0ify=y"
2. V(y(t)) <0 along trajectory y(t)



No spurious local optima

Standard Lyapunov function
B Dynamical system: y = f(y(t))
B Global asymptotic stability: y(t) » y*
W Stability certificate: Lyapunov function V(y) s.t.
1. Viy)>0ify+y*, =0ify=y"
2. V(y(t)) < 0 along trajectory y(t)

Our case (dynamical system replaced by optimization)
B Trajectory (path y(t) = h,(t)) is not specified
B Goalistoenter X: x=y(0)-»>y(1)€eX
B Lyapunov-like V(y) s.t.
1. Viy)>0ify+y*, =0ify=y"
2. C1: V(y(t)) non-increasing along trajectory y(t)

m Cost f(y(t)) must be non-increasing along y(t) and

fly(D) < f(y(0))



No spurious local optima

Conditions: 3 paths {h,:x € X\ X} and a Lyapunov-like
function V such that

B C1: both f(h,(t)) and V(h,(t)) are non-increasing for t € [0,1], and
f(hy(0)) > f(hye(1))

B C2: {hy:x € X\ X} is uniformly bounded and uniformly equicontinuous

\

P
Ct: {U‘x”’\ Ejf(be))
Viheen) 2V theesy)



No spurious local optima

Conditions: 3 paths {h,:x € X\ X} and a Lyapunov-like
function V such that

m C1: both f(h,(t)) and V(h,(t)) are non-increasing for t € [0,1], and
f(hye(0)) > f(hy(1))

m C2: {h:x € X\ X} is uniformly bounded and uniformly equicontinuous

Theorem [zZhou 2022]
m Ci,C2 < all local optima of (1) globally optimal & (2) exact

Are C1, C2 sufficient ?



No spurious local optima

Conditions: 3 paths {h,:x € X\ X} and a Lyapunov-like
function V such that
m C1: both f(h,(t)) and V(h,(t)) are non-increasing for t € [0,1], and
f(hy(0)) > f(hy(1))

m C2: {h,:x € X\ X} is uniformly bounded and uniformly equicontinuous

Local algorithm may converge to any local optimum:

Examples

Global optimum (g.0.): b l
Pseudo local optimum (p.l.0.): ¢
Genuine local optimum (g.l.0.): a, d




No spurious local optima

Conditions: 3 paths {h,:x € X\ X} and a Lyapunov-like
function V such that
m C1: both f(h,(t)) and V(h,(t)) are non-increasing for t € [0,1], and

f(hx(0)) > f(hy (1))
m C2: {h:x € X\ X} is uniformly bounded and uniformly equicontinuous

B C3: 3k>0suchthat f(h(t)) = f(ha(s)) = Ellha(t) = ha(s)]]

Local algorithm may converge to any local optimum:

Global optimum (g.0.): b l
Pseudo local optimum (p.l.o.): ¢
Genuine local optimum (g.l.0.): a, d

« C1, C2 eliminate genuine local optimal (a, d)
* C3 eliminates pseudo local optimum (c)



No spurious local optima

Conditions: 3 paths {h,:x € X\ X} and a Lyapunov-like
function V such that

m C1: both f(h.(t)) and V(h,(t)) are non-increasing for t € [0,1], and
f(hye(0)) > f(hye(1))

m C2: {h,:x € X\ X} is uniformly bounded and uniformly equicontinuous

B C3: 3k>0suchthat f(h(t)) — f(ha(s)) = kllha(t) — ha(s)]|

Theorem [Zhou 2022]
m Ci1,C2 < all local optima of (1) globally optimal & (2) exact
m C1, C2, C3 = all local optima of (1) globally optimal & (2) exact

Applications: OPF, low rank SDP, ...
Suitable for problems with convex cost but nonconvex feasible set



No spurious local optima

Conditions: 3 paths {h,:x € X\ X} and a Lyapunov-like
function V such that

B C1: both f(h,(t)) and V(h,(t)) are non-increasing for t € [0,1], and
f(he(0)) > f(hy(1))

B C2: {hy:x € X\ X} is uniformly bounded and uniformly equicontinuous

B C3:3k>0suchthat f(ha(t)) = f(ha(s)) = Ellha(t) = ha(s)]|

l.o. are g.o. or p.l.o

Relaxation
is exact




Application to OPF

Non-convex problem:

in f
Jming £(s)

s.t. convex constr.

vilix = |Sikl?
Relaxed problem:

in f
S,T,IE",IS (S)

s.t. convex constr.

vilik > S|’

Baran-Wu 1989 DistFlow model



Non-convex problem:

in f
Jmin f(s)

s.t. convex constr.

vilik = |Sil?
Relaxed problem:

in f
Jmin £(s)

s.t. convex constr.
2
vilik > |Sjk|

Application to OPF

Construction
V =— Z Vkejk — |Sjk|2
ik

hy: linearly decrease £j and linearly adjust s, S
accordingly.
This construction satisfies C1, C2, C3

Theorem

If there are no lower bounds for s;, i.e., bus
injections, then any local optimum of the original
non-convex OPF is also a global optimum.

First result on the local optimality for non-convex OPF problem. [Zhou, Low CDC2020]

F. Zhou



Non-convex problem:

i f
RS

s.t. convex constr.

vili = |Sikl?
Relaxed problem:

in  f
ST,IEI‘,]S (S)

s.t. convex constr.

Vil > |Sik|?

Application to OPF

Construction (a 2-bus example)

V = vl — \512|2

Let A be the positive root of

For x € X \ X, we have [S1»]?> — vi/12 < 0.

7152
%32 + (V1 — Re(21251H2))a+ |512|2 — V1€12

Consider the path:

t
)

Construction satisfies C1, C2, C3
« SOCP relaxation is exact

» Local optima are globally optimal

=5 — 5712 — - z12A,

F. Zhou



7 Summary

OPF is nonconvex & NP hard

OPF is “easy” in practice
B Semidefinite relaxations often exact
B Local algorithms often globally optimal

Analytical properties
B Exact relaxation
® No spurious local optima
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