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QCQP
Quadratically constrained quadratic program:





•  :  Hermitian matrix 

• 

• Homogeneous QCQP : all monomials are of degree 2

• OPF can be formulated as (nonconvex) QCQP

min
x∈ℂn

x𝖧C0x

s.t. x𝖧Clx ≤ bl, l = 1,…, L

Cl n × n
bl ∈ ℝ
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QCQP
Equivalent problem
Using , this is equivalent to:





• Any psd rank-1 matrix  has a spectral decomposition  for some 

•  is unique up to a rotation, i.e.,  satisfies   for any 

• Therefore can eliminate 

x𝖧Clx = tr (Clxx𝖧)
min

X∈𝕊n,x∈ℂn
tr (C0X)

s.t. tr (ClX) ≤ bl, l = 1,…, L

X = xx𝖧

X ∈ 𝕊n×n
+ X = xx𝖧 x ∈ ℂn

x x X = xx𝖧 x ejθ θ ∈ ℝ
x
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QCQP
Equivalent problem
Eliminating  —> minimization over psd matrices :





•  is linear in 


•  is convex in 

• rank  is nonconvex in 

x X
min
X∈𝕊n

tr (C0X)
s.t. tr (ClX) ≤ bl, l = 1,…, L

X ⪰ 0, rank(X) = 1

tr (ClX) ≤ bl X
X ⪰ 0 X

(X) = 1 X
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Removing rank constraint yields SDP relaxation



SDP relaxation
SDP relaxation of QCQP





• This is a standard semidefinite program which is a convex problem

• Solution strategy:


• Solve SDP for an optimal solution 


• If rank , then  from spectral decomposition from 


• If rank , then, in general, no feasible solution of QCQP can be directly obtained

min
X∈𝕊n

tr (C0X)
s.t. tr (ClX) ≤ bl, l = 1,…, L

X ⪰ 0

Xopt

(Xopt) = 1 xopt ∈ ℂn Xopt = xopt (xopt)
𝖧

(Xopt) > 1
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SDP relaxation
SDP relaxation of QCQP





• Even though SDP is convex, for large networks, it is still computationally impractical 

• How to exploit sparsity of large networks to reduce computational burden?

min
X∈𝕊n

tr (C0X)
s.t. tr (ClX) ≤ bl, l = 1,…, L

X ⪰ 0
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Ans: partial matrices and completions !



Partial matrices

A QCQP instance specified by  induces graph 

•  :  nodes (where )


•  :  links    iff    s.t.  


A partial matrix  is a set of  complex numbers defined on 





•  can be interpreted as matrix with entries partially specified, or a partial matrix

• If  is complete graph, then  is full  matrix 


A completion  of  is a full  matrix that agrees with  on graph 


(C0, Cl, bl, l = 1,…, L) F := (N, E)
N n Cl ∈ ℂn×n

E ⊆ N × N m ( j, k) ∈ E ∃l ∈ {0,1,…, L} [Cl]jk = [Cl]𝖧
kj ≠ 0

XF n + 2m F = (N, E)
XF := { [XF]jj, [XF]jk, [XF]kj : j ∈ N, ( j, k) ∈ E }

XF
F XF n × n

X XF n × n XF F
[X]jj = [XF]jj, [X]jk = [XF]jk, [X]kj = [XF]kj
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Partial matrices

If  is clique (fully connected subgraph) of , then  is fully specified principal submatrix of 
 on  :





q F XF(q)
XF q

[X(q)]jj := [XF]jj, [X(q)]jk := [XF]jk, [X(q)]kj := [XF]kj,
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Hermitian, psd, rank-1, trace
Partial matrix
A partial matrix  is


• Hermitian ( )  if 


• psd ( )  if  is Hermitian and  for all cliques  of 


• rank-1  if  for all cliques  of 

XF

XF = X𝖧
F [XF]kj = [XF]𝖧

jk

XF ⪰ 0 XF XF(q) ⪰ 0 q F

rank (XF(q)) = 1 q F
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Hermitian, psd, rank-1, trace
Partial matrix
A partial matrix  is


• Hermitian ( )  if 


• psd ( )  if  is Hermitian and  for all cliques  of 


• rank-1  if  for all cliques  of 


•  psd  if   is psd for all 


•  rank-1  if   is rank-1 for all 


where  

XF

XF = X𝖧
F [XF]kj = [XF]𝖧

jk

XF ⪰ 0 XF XF(q) ⪰ 0 q F

rank (XF(q)) = 1 q F

2 × 2 XF( j, k) ( j, k) ∈ E

2 × 2 XF( j, k) ( j, k) ∈ E

XF( j, k) := [
[XF]jj [XF]jk

[XF]kj [XF]kk]
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Hermitian, psd, rank-1, trace
Partial matrix
For partial matrix  





If both  and  are Hermitian, then  is real:


XF

tr (ClXF) := ∑
j∈N

[Cl]jj [XF]jj + ∑
( j,k)∈E

([Cl]jk [XF]kj + [Cl]kj [XF]jk)
Cl XF tr (ClXF)

tr (ClXF) = ∑
j∈N

[Cl]jj [XF]jj + 2 ∑
( j,k)∈E

Re ([Cl]jk [XF]kj)
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Chordal graph & extensions
 is a chordal graph if

• Either  has no cycles, or

• All minimal cycles (ones without chords) are of length 3


A chordal extension  of  is a chordal graph that contains 


•  is a chordal extension of 


Every graph has a (generally nonunique) chordal extension

• Complete supergraph of  is a 


Theorem [Grone et al 1984]: every psd partial matrix has a psd completion iff underlying graph is 
chordal


• We will extend this to psd rank-1 submatrices


F
F

c(F) F F
Xc(F) XF

F c(F)

Steven Low     SDR      Semidefinite relaxation of QCQP



Partial matrix & chordal extensions
Example
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Figure 13.1: Example 13.1: (a) Partial matrix XF . (b)(c) Two chordal extensions Xc(F) and their overlap-
ping maximal cliques.

2 cliques Wc(F)(q) 3 cliques Wc(F)(q)



Rank-1 characterization
Equivalent conditions





Theorem 

Suppose .   Then  C1  C2  C3.

C1: X ⪰ 0, rank(X) = 1
C2: Xc(F) ⪰ 0, rank(Xc(F) = 1
C3: XF( j, k) ⪰ 0, rank(XF( j, k)) = 1, ( j, k) ∈ E

∑
( j,k)∈c

∠[XF]jk = 0 mod 2π

Xjj > 0, [Xc(F)]jj
> 0, [XF]jj

> 0 ⟺ ⟺
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Feasible sets
Feasible set of QCQP





psd rank-1 matrices 





psd rank-1 chordal extensions 





psd rank-1 partial matrices 


𝕍 := {x ∈ ℂn | x𝖧Clx ≤ bl, l = 1,…, L}

X

𝕏 := { X ∈ 𝕊n | X satisfies tr(ClX) ≤ bl, C1 }

Xc(F)

𝕏c(F) := { Xc(F) | Xc(F) satisfies tr (ClXc(F)) ≤ bl, C2 }

XF

𝕏F := { XF | XF satisfies tr (ClXF) ≤ bl, C3 }
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Feasible sets
Equivalence
Corollary 
Fix any connected .  Any partial matrix   or   has a unique psd rank-1 
completion 


Definition: Two sets  and  are equivalent ( ) if there is a bijection between them


Theorem 



Implication: A feasible  can be recovered from any partial matrix   or  
 through spectral decomposition (but there is a simpler way to compute  than 

completion)

F Xc(F) ∈ 𝕏c(F) XF ∈ 𝕏F
X ∈ 𝕏

A B A ≡ B

𝕍 ≡ 𝕏 ≡ 𝕏c(F) ≡ 𝕏F

x ∈ 𝕍 Xc(F) ∈ 𝕏c(F)
XF ∈ 𝕏F x ∈ 𝕍
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Equivalent problems
QCQP 





is equivalent to min over matrices and partial matrices:





where  


min
x∈ℂn

x𝖧C0x subject to x ∈ 𝕍

min
X

x𝖧C0x subject to X ∈ 𝕏̂

𝕏̂ := {𝕏, 𝕏c(F), 𝕏F}

Steven Low     SDR      Semidefinite relaxation of QCQP

Implications:

Instead of solving for , solve for  or  which are much smaller 

for large sparse networks 

X ∈ 𝕏 Xc(F) ∈ 𝕏c(F) XF ∈ 𝕏F



Equivalent problems
QCQP 





is equivalent to min over matrices and partial matrices:





where  


min
x∈ℂn

x𝖧C0x subject to x ∈ 𝕍

min
X

x𝖧C0x subject to X ∈ 𝕏̂

𝕏̂ := {𝕏, 𝕏c(F), 𝕏F}
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Computational challenges remain:

  are all nonconvex𝕏, 𝕏c(F), 𝕏F



Semidefinite relaxations
Convex supersets





Semidefinite relaxations:


𝕏+ := {X ∈ 𝕊n | XF satisfies tr(ClX) ≤ bl, X ⪰ 0}

𝕏+
c(F) := {Xc(F) | XF satisfies tr (ClXc(F)) ≤ bl, Xc(F) ⪰ 0}

𝕏+
F := {XF | XF satisfies tr (ClXF) ≤ bl, XF( j, k) ⪰ 0, ( j, k) ∈ E}

QCQP-sdp : min
X

C (XF) s.t. X ∈ 𝕏+

QCQP-ch : min
Xc(F)

C (XF) s.t. Xc(F) ∈ 𝕏+
c(F)

QCQP-socp : min
XF

C (XF) s.t. XF ∈ 𝕏+
F
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Semidefinite relaxations
Solution recovery
If a feasible / optimal solution  of semidefinite relaxation lies in  , then can 
recover feasible / optimal  of QCQP


Recovery procedure:  given  

1. Set   and   to arbitrary value


2. For ,


 


where   : path from bus 1 to bus  in an arbitrary spanning tree rooted at bus 1

X 𝕏, 𝕏c(F), or 𝕏F
x ∈ 𝕍

XF ∈ 𝕏F

|x1 | := [XF]11
∠x1

j = 1,…, n

|xj | := [XF]jj
, ∠xj := ∠V1 − ∑

(i,k)∈ℙj

∠[XF]ik

ℙj j
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Semidefinite relaxations
Convex supersets





Semidefinite relaxations:


𝕏+ := {X ∈ 𝕊n | XF satisfies tr(ClX) ≤ bl, X ⪰ 0}

𝕏+
c(F) := {Xc(F) | XF satisfies tr (ClXc(F)) ≤ bl, Xc(F) ⪰ 0}

𝕏+
F := {XF | XF satisfies tr (ClXF) ≤ bl, XF( j, k) ⪰ 0, ( j, k) ∈ E}

QCQP-sdp : min
X

C (XF) s.t. X ∈ 𝕏+

QCQP-ch : min
Xc(F)

C (XF) s.t. Xc(F) ∈ 𝕏+
c(F)

QCQP-socp : min
XF

C (XF) s.t. XF ∈ 𝕏+
F
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most complex

simplest



Tightness
Definition  
1.  is an effective subset of  ( ) if given any ,  with same cost 




2.  is similar to  ( ) if  and 


Theorem [Tightness]

1. 


2. If  is a tree, then 


Corollary [Optimal values]


1. 


2. If  is a tree, then 

A B A ⊑ B a ∈ A ∃ b ∈ B
CA(a) = CB(b)
A B A ≃ B A ⊑ B B ⊑ A

𝕍 ⊑ 𝕏+ ≃ 𝕏+
c(F) ⊑ 𝕏+

F

F 𝕍 ⊑ 𝕏+ ≃ 𝕏+
c(F) ≃ 𝕏+

F

Cqcqp ≥ Csdp = Cch ≥ Csocp

F Cqcqp ≥ Csdp = Cch = Csocp
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Semidefinite relaxations
Implications   
1. Radial networks:  Solve QCQP-socp


• Simplest computationally

• Same tightness as QCQP-ch and QCQP-SDP


2. Meshed networks:  Solve QCQP-ch or QCQP-socp

• QCQP-ch strictly tighter than QCQP-socp, and same tightness as QCQP-sdp

• QCQP-ch can be orders of magnitude simpler computationally than QCQP-sdp for large sparse 

networks

• QCQP-ch is as complex as QCQP-sdp in the worst case
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Outline
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OPF as QCQP
Recall

  


min
V∈ℂN+1

V𝖧C0V

s.t. pmin
j ≤ tr (ΦjVV𝖧) ≤ pmax

j , j ∈ N

qmin
j ≤ tr (ΨjVV𝖧) ≤ qmax

j , j ∈ N

vmin
j ≤ tr (JjVV𝖧) ≤ vmax

j , j ∈ N

tr ( ̂YjkVV𝖧) ≤ Imax
jk , ( j, k) ∈ E

tr ( ̂YkjVV𝖧) ≤ Imax
kj , ( j, k) ∈ E
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abbreviated as:

tr (ClVV𝖧) ≤ bl, l = 1,…, L



Constraints
Given , define partial matrix  by





Constraints in terms of 


V ∈ ℂN+1| WG

[WG]jj := |Vj |
2 , j ∈ N

[WG]jk
:= VjV𝖧

k =: [WG]𝖧
kj, ( j, k) ∈ E

WG

pmin
j ≤ tr (ΦjWG) ≤ pmax

j

qmin
j ≤ tr (ΨjWG) ≤ qmax

j

vmin
j ≤ tr (JjWG) ≤ vmax

j

tr ( ̂YjkWG) ≤ Imax
jk

tr ( ̂YkjWG) ≤ Imax
kj
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abbreviated as:

tr (ClWG) ≤ bl, l = 1,…, L



OPF and relaxations
OPF as QCQP





Semidefinite relaxations:


min
V

C0(V) s.t. tr (ClVV𝖧) ≤ bl, l = 1,…, L

OPF-sdp : min
W∈𝕊N+1

C0(WG) s.t. tr (ClW) ≤ bl, l = 1,…, L, W ⪰ 0

OPF-ch : min
Wc(G)

C0(WG) s.t. tr (ClWc(G)) ≤ bl, l = 1,…, L, Wc(G) ⪰ 0

OPF-socp : min
WG

C0(WG) s.t. tr (ClWG) ≤ bl, l = 1,…, L, WG( j, k) ⪰ 0, ( j, k) ∈ E
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Exact relaxation
Definition  

1. OPF-sdp is exact if every optimal solution  of OPF-sdp is psd rank-1


2. OPF-ch is exact if every optimal solution  of OPF-ch is psd rank-1


3. OPF-socp is exact if every optimal solution  of OPF-docp


• is  psd rank-1, i.e.,  are psd rank-1 for all , and 


• satisfies cycle condition, i.e., 


Wsdp

Wch
c(G)

Wsocp
G

2 × 2 Wsocp
G ( j, k) ( j, k) ∈ E

∑
( j,k)∈c

∠[Wsocp
G ]jk = 0 mod 2π
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QCQP and SOCP relaxation
QCQP:





SOCP relaxation:





•  :  Hermitian matrix,  

min
x∈ℂn

x𝖧C0x

s.t. x𝖧Clx ≤ bl, l = 1,…, L

min
XG

tr (C0XG)
s.t. tr (ClXG) ≤ bl, l = 1,…, L

XG( j, k) ⪰ 0, ( j, k) ∈ E

Cl n × n bl ∈ ℝ
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Sufficient condition
C13.1:  is positive definite


C13.2: for every ,  s.t.   for all 


Theorem 
Suppose  is a tree and C13.2 holds.  Then


1. 

2. An optimal solution of QCQP can be recovered from every optimal solution of its SOCP 

relaxation

C0

( j, k) ∈ E ∃αjk ∠[Cl]jk
∈ [αij, αij + π] l = 0,…, L

G
Copt = Csocp
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An optimal solution of SOCP relaxation may not be  rank-1 

when optimal solutions of SOCP relaxation are nonunique

2 × 2



Sufficient condition
C13.1:  is positive definite


C13.2: for every ,  s.t.   for all 


Corollary 
Suppose  is a tree and both C13.1 and C13.2 hold.  Then SOCP relaxation is exact, i.e., every 
optimal solution  is  psd rank-1 


• Cycle condition is vacuous since  is a tree

C0

( j, k) ∈ E ∃αjk ∠[Cl]jk
∈ [αij, αij + π] l = 0,…, L

G
Wsocp

G 2 × 2

G
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Application to OPF
Recall OPF as QCQP

  


min
V∈ℂN+1

V𝖧C0V

s.t. pmin
j ≤ tr (ΦjVV𝖧) ≤ pmax

j , j ∈ N

qmin
j ≤ tr (ΨjVV𝖧) ≤ qmax

j , j ∈ N

vmin
j ≤ tr (JjVV𝖧) ≤ vmax

j , j ∈ N

tr ( ̂YjkVV𝖧) ≤ Imax
jk , ( j, k) ∈ E

tr ( ̂YkjVV𝖧) ≤ Imax
kj , ( j, k) ∈ E
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abbreviated as:

tr (ClVV𝖧) ≤ bl, l = 1,…, L



Application to OPF
Exactness condition

Steven Low     SDR      Exactness: linear separability
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for some Hermitian matrices C0,F j,Y j,Jj where j 2 N. Condition C13.2 depends only on the off-
diagonal entries of C0, F j, Y j (Jj are diagonal matrices). It implies a simple pattern on the power
injection constraints (13.21a)(13.21b). Write the series admittances in terms of its real and imaginary
parts ys

jk =: gs
jk + ibs

jk with gs
jk > 0,bs

jk < 0. (Note that C13.2 does not depend on the shunt admittances⇣
ym

jk,y
m
k j

⌘
.) Then we have

[Fk]i j =

8
><

>:

1
2Yi j = �1

2(gs
i j + ibs

i j) if k = i
1
2YH

i j = �1
2(gs

i j � ibs
i j) if k = j

0 if k 62 {i, j}

[Yk]i j =

8
><

>:

�1
2i Yi j = 1

2(bs
i j � igs

i j) if k = i
1
2iY

H
i j = 1

2(bs
i j + igs

i j) if k = j
0 if k 62 {i, j}

Hence for each line ( j,k) 2 E the relevant angles for C13.2 are those of [C0] jk and

⇥
F j

⇤
jk = �1

2

⇣
gs

jk + ibs
jk

⌘
, [Fk] jk = �1

2

⇣
gs

jk � ibs
jk

⌘

⇥
Y j

⇤
jk =

1
2

⇣
bs

jk � igs
jk

⌘
, [Yk] jk =

1
2

⇣
bs

jk + igs
jk

⌘

as well as the angles of �[F j] jk,�[Fk] jk and �[Y j] jk,�[Yk] jk. These quantities are shown in Figure 13.3
with their magnitudes normalized to a common value and explained in the caption of the figure.

Φ j
"# $% jk

Re

Im

− Φ j
#$ %& jk

Φk[ ] jk

− Φk[ ] jk

Ψ j
"# $% jk − Ψ k[ ] jk

Ψ k[ ] jk − Ψ j
#$ %& jk

lower)bounds)
on))pj,qj, pk,qk

α jk

[C0 ] jk

upper)bounds)
on))pj,qj, pk,qk

Figure 13.3: Condition C13.2’ for OPF on a line ( j,k) 2 E. The quantities ([F j] jk, [Fk] jk, [Y j] jk, [Yk] jk)
on the left-half plane correspond to finite upper bounds on (p j, pk,q j,qk) in (13.21a)(13.21b);
(�[F j] jk,�[Fk] jk,�[Y j] jk,�[Yk] jk) on the right-half plane correspond to finite lower bounds on
(p j, pk,q j,qk).

Condition C13.2 applied to OPF (13.21) takes the following form (see Figure 13.3):

Corollary 
Suppose  is a tree and both C13.1 and 
the diagram hold.  

Then SOCP relaxation is exact

G



Outline
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Assumptions
Assume  

1. Voltage magnitudes  are fixed


2. Reactive powers are ignored


3. Shunt admittances are zero 

|Vj |

ym
jk = ym

kj := 0
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OPF formulation




where   with  and 

min
p,P,θ

C(p)

s.t. pmin
j ≤ pj ≤ pmax

j , j ∈ N

θmin
jk ≤ θjk ≤ θmax

jk , ( j, k) ∈ E

pj = ∑
k:k∼j

Pjk, j ∈ N

Pjk = gjk − gjk cos θjk − bjk sin θjk, ( j, k) ∈ E

Vj = |Vj | eiθj |Vj | := 1 θjk := θj − θk
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Eliminate  and Pjk θjk

constraints on line flows, line losses, or stability 

power flow equation (polar form)

nodal power balance



OPF formulation
Define injection region





OPF:                                


SOCP relaxation:             


Definition: SOCP relaxation is exact if every optimal solution lies in 

ℙθ := p ∈ ℝn pj = ∑
k:k∼j

(gjk − gjk cos θjk − bjk sin θjk), θjk ≤ θjk ≤ θjk

ℙp := {p ∈ ℝn | p
j
≤ pj ≤ pj, j ∈ N}

min
p

C(p) s.t. p ∈ ℙθ ∩ ℙp

min
p

C(p) s.t. p ∈ conv (ℙθ) ∩ ℙp

ℙθ ∩ ℙp
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Pareto front

Definitions 

A point  is a Pareto optimal point in 
 if there does not exist another  such that 


• , and


•  for at least one 


The Pareto front of :

x ∈ A ⊆ ℝn

A x′￼ ∈ A

x′￼ ≤ x
x′￼j < xj j

A
𝕆(A) := {all Parento optimal points}
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1. We show that P traces out an ellipse in R
2 as q jk ranges over [�p,p]. Since the feasible set is a

subset of ellipse, it is nonconvex.

2. We show that condition C13.4 restricts the feasible set to the lower half of the ellipse.

3. We show that condition C13.3 implies that the Pareto front of the feasible set of the relaxed problem
(13.25) coincides with the feasible set. This implies that the relaxation is exact.

4. Finally we show that the relaxation (13.25) is an SOCP.

Step 1: P that satisfies (13.26) is an ellipse. In general the set of points x 2 R
k that satisfy

(x� c)TM(x� c) =
���M1/2(x� c)

���
2

2
= 1

is an ellipse if c 2 R
n and M � 0 is a real (symmetric) positive definite matrix. The center of the ellipsoid

is c and the k principal axes are the k eigenvectors of M (see Exercise 13.4). To see that P describes an
ellipse, write v := [cosq jk sinq jk]

T = A�1 �
P�g jk1

�
. Hence kvk2

2 = 1, yielding

(P�g jk1)T
⇣

AAT

⌘�1
(P�g jk1) = 1 (13.27)

Hence P is an ellipse centered at g jk1. From (13.26), the ellipse P passes through the origin when q jk = 0,
as shown in Figures 13.4. (SL: Unify caption, brief vs detailed.) Since the feasible set is a subset of the

Pjk

Pkj

π kj
min

π jk
min

2gjk

2bjk−

Figure 13.4: The feasible set of OPF (13.24) for the two-bus network is a subset of an ellipse without
the interior, hence nonconvex. OPF-socp (13.25) includes the interior of the ellipse and is hence convex.
If the cost function C is strictly increasing in (Pjk,Pk j) then the Pareto front of the SOCP feasible set
will lie on the lower part of the ellipse, O(Pq ) = Pq , and hence OPF-socp is exact. The points P :=
(Pjk(q jk),Pk j(qk j)) = 0 when q jk = 0, Pjk = pmin

jk when q jk = q min
jk , and Pk j = pmin

k j when q jk = q min
k j .

ellipse P (without the interior), it is nonconvex.

Pareto front



Sufficient condition
C13.3:  is strictly increasing in each 


C13.4: for every ,  


Theorem 
Suppose  is a tree and C13.3, C13.4 hold.  Then


1. 


2. SOCP relaxation is exact 

C(p) pj

( j, k) ∈ E tan−1
bjk

gjk
< θmin

jk ≤ θmax
jk < tan−1

−bjk

gjk

G
ℙθ ∩ ℙp = 𝕆(conv(ℙθ) ∩ ℙp)
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feasible set is Pareto front of its relaxation



Geometric insight
2-bus network
For each line , line flows  and angle differences  satisfy 


       where    


1.  traces out an ellipse in  as  ranges over .  


Hence feasible set (subset of ellipse) is noncovex.

2. C13.4 restricts  to lower half of ellipse


( j, k) ∈ E P := (Pjk, Pkj) θjk := θj − θk

P − gjk1 = A [
cos θjk

sin θjk] A := [
−gjk −bjk

−gjk bjk ]
P ℝ2 θjk [−π, π]

ℙθ
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Figure 13.4: The feasible set of OPF (13.24) for the two-bus network is a subset of an ellipse without
the interior, hence nonconvex. OPF-socp (13.25) includes the interior of the ellipse and is hence convex.
If the cost function C is strictly increasing in (Pjk,Pk j) then the Pareto front of the SOCP feasible set
will lie on the lower part of the ellipse, O(Pq ) = Pq , and hence OPF-socp is exact. The points P :=
(Pjk(q jk),Pk j(qk j)) = 0 when q jk = 0, Pjk = pmin

jk when q jk = q min
jk , and Pk j = pmin
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ellipse P (without the interior), it is nonconvex.



Geometric insight
2-bus network
For each line , line flows  and angle differences  satisfy 


       where    


1.  traces out an ellipse in  as  ranges over .  


Hence feasible set (subset of ellipse) is noncovex.

2. C13.4 restricts  to lower half of ellipse

3. C13.3 implies Pareto front of relaxed feasible set coincides


with feasible set, i.e., relaxation is exact


( j, k) ∈ E P := (Pjk, Pkj) θjk := θj − θk

P − gjk1 = A [
cos θjk

sin θjk] A := [
−gjk −bjk

−gjk bjk ]
P ℝ2 θjk [−π, π]

ℙθ
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Pjk

Pkj

π jk,π kj( )

π jk,π kj( )

Pkj = π kj +µ Pjk −π jk( )

µ :=
π kj −π kj

π jk −π jk

Figure 13.6: The set conv(Pq ) is the intersection of the ellipse, including its interior, and a half-space.

2. If there are no constraints on the injections p, then SOCP relaxation (13.25) is exact under condition
C13.3 due to Pq = O(conv Pq ) in (13.28). As illustrated in Figure 13.7, upper bounds p on power
injections p do not affect exactness whereas lower bounds p do. (SL: Unify caption, brief vs

p
j
, p

k( )

Pareto)front)

(a) Exact relaxation with constraint

p
j
, p

k( )

Pareto)front)

(b) Inexact relaxation with constraint

Figure 13.7: With lower bounds p on power injections, the feasible set of OPF-socp (13.25) is the shaded
region. (a) When the feasible set of OPF (13.24) is restricted to the lower half of the ellipse (small |q jk|),
the Pareto front remains on the ellipse itself, Pq \ Pp = O(conv(Pq ) \ Pp), and hence the relaxation is
exact. (b) When the feasible set of OPF includes upper half of the ellipse (large |q jk|), the Pareto front
may not lie on the ellipse if p is large, making the relaxation not exact.

detailed.) The purpose of condition C13.4 is to restrict the angle q jk in order to eliminate the upper
half of the ellipse from Pq .

Remark 13.5 (Tree topology). The tree topology allows the extension of the argument for a single line to
a radial network with multiple lines, in two ways. First let F

jk
q denotes the set of branch power flows on



Outline
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2. Application to OPF


3. Exactness condition: linear separability


4. Exactness condition: small angle difference


5. Condition for global optimality

• Sufficient condition 

• Application to OPF
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instances which have no spurious local optima. In contrast,
many real-world non-convex problems do fall within such
intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
set is not a Riemannian manifold, or the Riemannian gradient
and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.

Our conditions have two parts. The first part, which also
appeared in [18], is on the sufficient condition. Roughly speak-
ing, if for any relaxed point, there exists a path connecting it
to the non-convex feasible set and the path satisfies

• along the path the cost is non-increasing,
• along the path the ‘distance’ to the non-convex feasible

set is non-increasing,
then the problem must have exact relaxation and no spurious
local optima simultaneously. Here the ‘distance’ can be any
properly constructed function, as we will define later as a
Lyapunov-like function (Definition 10). The second part is on
the necessary condition, which says that if a problem does have
exact relaxation and no spurious local optima simultaneously,
then there must exist such Lyapunov-like function and paths
satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed
to exist, for specific problems it could still be difficult to find
or construct them. We then derive certain rules to construct
the Lyapunov-like function and paths of a new problem from
primitives problems with known Lyapunov-like function and
paths. This process allows us to reuse and extend known
results as the problem changes and grows. Finally, we apply
the proposed approach to two specific problems, Optimal
Power Flow and low rank SDP. Our work proves the first
known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
non-convex problem [25], [26], [9], [27]. In the recent years,
there have been considerable analytical works on the provable
conditions for the relaxation exactness, which are summarized
in the reviews [28], [29] and references therein. However, few
analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
authors’ knowledge, this is the first analytical result of its kind,
and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x 2 X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x 2 X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ✓ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ ! R is convex and
continuous over X̂ . We do not require the relaxation X̂ to be
efficiently represented.

Definition 1. A point xlo
2 X is called a local optimum of

(1) if there exists a � > 0 such that f(xlo)  f(x) for all
x 2 X with kx� xlo

k < �.

Definition 2 (Strong Exactness). We say the relaxation (2) is
exact with respect to (1) if any optimal point of (2) is feasible,
and hence globally optimal, for (1).

Unless otherwise specified, we will always use the term
exact to refer to such strong exactness. Definition 2 implies
in particular that, if (2) is exact, then 8x̂ 2 X̂ \ X , f(x̂) >
minx2X̂

f(x).

Definition 3. A path in S ✓ Kn connecting point a to point
b is a continuous function h : [0, 1] ! S such that h(0) = a
and h(1) = b.

We may refer to a path by the corresponding function h in
the remainder of the paper.

Lemma 1. The following are equivalent:

Convex relaxation:

!" : compact, convex, " ⊆ !" ⊆ $!
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instances which have no spurious local optima. In contrast,
many real-world non-convex problems do fall within such
intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
set is not a Riemannian manifold, or the Riemannian gradient
and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.

Our conditions have two parts. The first part, which also
appeared in [18], is on the sufficient condition. Roughly speak-
ing, if for any relaxed point, there exists a path connecting it
to the non-convex feasible set and the path satisfies

• along the path the cost is non-increasing,
• along the path the ‘distance’ to the non-convex feasible

set is non-increasing,
then the problem must have exact relaxation and no spurious
local optima simultaneously. Here the ‘distance’ can be any
properly constructed function, as we will define later as a
Lyapunov-like function (Definition 10). The second part is on
the necessary condition, which says that if a problem does have
exact relaxation and no spurious local optima simultaneously,
then there must exist such Lyapunov-like function and paths
satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed
to exist, for specific problems it could still be difficult to find
or construct them. We then derive certain rules to construct
the Lyapunov-like function and paths of a new problem from
primitives problems with known Lyapunov-like function and
paths. This process allows us to reuse and extend known
results as the problem changes and grows. Finally, we apply
the proposed approach to two specific problems, Optimal
Power Flow and low rank SDP. Our work proves the first
known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
non-convex problem [25], [26], [9], [27]. In the recent years,
there have been considerable analytical works on the provable
conditions for the relaxation exactness, which are summarized
in the reviews [28], [29] and references therein. However, few
analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
authors’ knowledge, this is the first analytical result of its kind,
and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x 2 X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x 2 X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ✓ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ ! R is convex and
continuous over X̂ . We do not require the relaxation X̂ to be
efficiently represented.

Definition 1. A point xlo
2 X is called a local optimum of

(1) if there exists a � > 0 such that f(xlo)  f(x) for all
x 2 X with kx� xlo

k < �.

Definition 2 (Strong Exactness). We say the relaxation (2) is
exact with respect to (1) if any optimal point of (2) is feasible,
and hence globally optimal, for (1).

Unless otherwise specified, we will always use the term
exact to refer to such strong exactness. Definition 2 implies
in particular that, if (2) is exact, then 8x̂ 2 X̂ \ X , f(x̂) >
minx2X̂

f(x).

Definition 3. A path in S ✓ Kn connecting point a to point
b is a continuous function h : [0, 1] ! S such that h(0) = a
and h(1) = b.

We may refer to a path by the corresponding function h in
the remainder of the paper.

Lemma 1. The following are equivalent:

" : compact, nonconvex

% : continuous, convex
Conditions for

Exact
Relaxation and

Local
Optimality

Fengyu Zhou

Motivation

Setup and
Preliminaries

Main Results

Applications

Remarks

Setup and Preliminaries

(Potentially) non-convex optimization:

min
x

f (x)

s.t. x 2 X (O)

convex relaxation:

min
x

f (x)

s.t. x 2 X̂ (R)

Assumptions

• X ✓ X̂ ✓ Rn or Cn

• both X and X̂ are non-empty and compact (i.e., closed and bounded)

• X̂ is a convex set while X is generally not

• f is convex and continuous over X̂

Definition

Problem (R) is exact w.r.t. (O) i↵ any optimal point of (R) is feasible, and hence
globally optimal, for (O).
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instances which have no spurious local optima. In contrast,
many real-world non-convex problems do fall within such
intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
set is not a Riemannian manifold, or the Riemannian gradient
and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.
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ing, if for any relaxed point, there exists a path connecting it
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known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
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conditions for the relaxation exactness, which are summarized
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analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
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and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.
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instances which have no spurious local optima. In contrast,
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intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
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and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.
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appeared in [18], is on the sufficient condition. Roughly speak-
ing, if for any relaxed point, there exists a path connecting it
to the non-convex feasible set and the path satisfies

• along the path the cost is non-increasing,
• along the path the ‘distance’ to the non-convex feasible

set is non-increasing,
then the problem must have exact relaxation and no spurious
local optima simultaneously. Here the ‘distance’ can be any
properly constructed function, as we will define later as a
Lyapunov-like function (Definition 10). The second part is on
the necessary condition, which says that if a problem does have
exact relaxation and no spurious local optima simultaneously,
then there must exist such Lyapunov-like function and paths
satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed
to exist, for specific problems it could still be difficult to find
or construct them. We then derive certain rules to construct
the Lyapunov-like function and paths of a new problem from
primitives problems with known Lyapunov-like function and
paths. This process allows us to reuse and extend known
results as the problem changes and grows. Finally, we apply
the proposed approach to two specific problems, Optimal
Power Flow and low rank SDP. Our work proves the first
known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
non-convex problem [25], [26], [9], [27]. In the recent years,
there have been considerable analytical works on the provable
conditions for the relaxation exactness, which are summarized
in the reviews [28], [29] and references therein. However, few
analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
authors’ knowledge, this is the first analytical result of its kind,
and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x 2 X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x 2 X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ✓ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ ! R is convex and
continuous over X̂ . We do not require the relaxation X̂ to be
efficiently represented.

Definition 1. A point xlo
2 X is called a local optimum of

(1) if there exists a � > 0 such that f(xlo)  f(x) for all
x 2 X with kx� xlo

k < �.

Definition 2 (Strong Exactness). We say the relaxation (2) is
exact with respect to (1) if any optimal point of (2) is feasible,
and hence globally optimal, for (1).

Unless otherwise specified, we will always use the term
exact to refer to such strong exactness. Definition 2 implies
in particular that, if (2) is exact, then 8x̂ 2 X̂ \ X , f(x̂) >
minx2X̂

f(x).

Definition 3. A path in S ✓ Kn connecting point a to point
b is a continuous function h : [0, 1] ! S such that h(0) = a
and h(1) = b.

We may refer to a path by the corresponding function h in
the remainder of the paper.

Lemma 1. The following are equivalent:

" : compact, nonconvex

% : continuous, convex

Relaxation (2) is exact if there exists optimal solution of (2) 
that is optimal for (1)

Key result [Zhou 2022]: Lyapunov-like conditions for
• Relaxation (2) is exact; and
• Any local optimum of (1) is globally optimal 
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Definition: A path from ! ∈ #$ ∖ $ to $ is a continuous 
function ℎ!: 0,1 → #$ such that ℎ! 0 = ! and ℎ! 1 ∈ $

Lemma [Zhou 2022]
(2) is exact ⟺ ∀# ∈ %& ∖ & there is a path ℎ! from # to & such that 

• ! ℎ!($) nonincreasing in $
• ! ℎ!(1) < ! ℎ!(0)
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A Lyapunov-like function associated with (O) and (R) is a continuous function
V : X̂ ! R such that V (x) = 0 for x 2 X and V (x) > 0 for x 2 X̂ \ X .
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Standard Lyapunov function
n Dynamical system:  "̇ = $(" & )
n Global asymptotic stability: " & → "∗
n Stability certificate: Lyapunov function )(") s.t.

1. # $ > 0 if $ ≠ $∗,  =0 if $ = $∗
2. #̇($ , ) < 0 along trajectory $(,)



No spurious local optima

Standard Lyapunov function
n Dynamical system:  "̇ = $(" & )
n Global asymptotic stability: " & → "∗
n Stability certificate: Lyapunov function )(") s.t.

1. # $ > 0 if $ ≠ $∗,  =0 if $ = $∗
2. #̇($ , ) < 0 along trajectory $(,)

Our case (dynamical system replaced by optimization)
n Trajectory (path " & = ℎ"(&)) is not specified 
n Goal is to enter +: , = "(0) → "(1) ∈ +
n Lyapunov-like )(") s.t.

1. # $ > 0 if $ ≠ $∗,  =0 if $ = $∗
2. C1: #($ , ) non-increasing along trajectory $(,)

n Cost $(" & ) must be non-increasing along "(&) and
$ " 1 < $ " 0
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Conditions: ∃ paths ℎ!: $ ∈ &' ∖ ' and a Lyapunov-like
function ) such that 

n C1: both ! ℎ!($) and & ℎ!($) are non-increasing for $ ∈ 0, 1 , and 
! ℎ!(0) > ! ℎ!(1)

n C2: ℎ!: - ∈ ./ ∖ / is uniformly bounded and uniformly equicontinuous

C1: 
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n C1: both ! ℎ!($) and & ℎ!($) are non-increasing for $ ∈ 0, 1 , and 
! ℎ!(0) > ! ℎ!(1)

n C2: ℎ!: - ∈ ./ ∖ / is uniformly bounded and uniformly equicontinuous

Theorem [Zhou 2022]
n C1, C2       ⟸ all local optima of (1) globally optimal & (2) exact 

Are C1, C2 sufficient ?
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Local Optima Classification

Definition

Each local optimum x lo of (O) is classified into 3 disjoint classes.

• Global optimum (g.o.): if f (x lo)  f (x) for all x 2 X .

• Pseudo local optimum (p.l.o.): if there exists a path h : [0, 1] ! X such that
h(0) = x lo, f (h(t)) ⌘ f (x lo) for all t 2 [0, 1] and h(1) is not a local optimum.

• Genuine local optimum (g.l.o.): if it is neither a g.o. nor p.l.o.

Examples

Global optimum (g.o.): b
Pseudo local optimum (p.l.o.): c
Genuine local optimum (g.l.o.): a, d

X

a

b

c

d
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Local algorithm may converge to any local optimum:
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Conditions: ∃ paths ℎ!: $ ∈ &' ∖ ' and a Lyapunov-like
function ) such that 

n C1: both ! ℎ!($) and & ℎ!($) are non-increasing for $ ∈ 0, 1 , and 
! ℎ!(0) > ! ℎ!(1)

n C2: ℎ!: - ∈ ./ ∖ / is uniformly bounded and uniformly equicontinuous

n C3: ∃ 2 > 0 such that 
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Lemma 3. If (1) is exact with respect to (2) and (1) has no
genuine local optima, then the feasible set of (1) is connected.

Proof. If X is not connected, then by definition X can be
partitioned into two disjoint non-empty closed sets X1 and X2

with X = X1[X2, which are hence both compact. Further we
let xi be any global optimum of minx2Xi f(x) for i = 1, 2.
Clearly x1 6= x2 and they are both local optima of (1).

If f(x1) = f(x2), then any convex combination of x1,
x2 must be a global optimum to (2). Since there is no path
in X that connects x1 and x2, there must be some convex
combination that is outside X . This contradicts the exactness
of relaxation.

If f(x1) 6= f(x2), without loss of generality we assume
f(x1) < f(x2), i.e., x2 is not a global optimum of (1). But
x2 is not a pseudo local optimum of (1) either, contradicting
Theorem 1. To see this, note that any point x0

2 X which is
connected to x2 via a path in X must also be a point in X2

and if f(x0) = f(x2) then x0 must be a local optimum of (1)
as well.

Corollary 2. Condition (C) implies that the feasible set of (1)
is connected.

Now we are in a good position to discuss some conditions
that rule out pseudo local optima and therefore guarantee that
any local optimum must be a global optimum.

Corollary 3. If all local optima of (1) are isolated, then
Condition (C) implies that any local optimum of (1) is a global
optimum.

Here, local optima being isolated means any local optimum
of (1) has an open neighborhood which contains no other local
optimum. The proof is straightforward as by definition isolated
local optimum could not be pseudo local optimum. In fact, in
this case the optimum can be proved to be also unique.

Another way to eliminate pseudo local optima is by
strengthening the monotonicity of f(hx(t)) in Condition (C).
Consider the following condition which is slightly stronger
than (C).

(C’) Condition (C) holds, and there exists k > 0 such that
8x 2 X̂ \ X , 80  t < s  1 we have

f(hx(t))� f(hx(s)) � kkhx(t)� hx(s)k. (3)

In Condition (C’), k · k could be any norm on Kn. As a
caveat, `0-“norm” is not allowed here as it is not a norm
since it does not satisfy k↵xk = |↵|kxk. Note that Condition
(C) already implies f(hx(t)) � f(hx(s)) � 0, while (C’)
strengthens this condition by enforcing a positive lower bound
depending on hx.

Theorem 2. If (C’) holds, then any local optimum of (1) must
be a global optimum.

Proof. Following the proof of Theorem 1, suppose x 2 X is a
local but not global optimum for (1). Then we have x = `(t†)
and could obtain a limit point of the sequence hm, denoted as
h. Since both sides of (3) are continuous in hm(t) and hm(s),

and the limits of hm(t) and hm(s) are h(t) and h(s), we must
have whenever h(t) 6= h(s),

f(h(t))� f(h(s)) � kkh(t)� h(s)k > 0.

Taking t = 0 we can conclude that h(0) (which is the same
point as x) is not a local optimum of (1).

IV. NECESSARY CONDITIONS

In this section we will study the necessary conditions for a
non-convex problem to have exact relaxation and no spurious
local optima simultaneously. It turns out the results are not
exactly the converses of Theorem 1 or Theorem 2, but in a
slightly weaker sense. Specifically, we show that if a non-
convex problem is known to have exact relaxation and no
spurious local optima simultaneously, then the Lyapunov-like
function and paths satisfying Condition (C) are guaranteed to
exist. However, it still may or may not be easy to find those
functions or paths in practice for a specific problem.

A. Results
Assumption 1. The feasible set X is semianalytic and the
cost function f is analytic.

We refer to [31] for more detailed definitions and properties
of semianalytic sets. This assumption is not restrictive for most
of the engineering problems. If K is chosen as C, then we
suggest to view all the complex functions as functions of real
variables by separating the real and imaginary parts, and the
space of Cn can be viewed as a shorthand for R2n in this
section.

Theorem 3 (necessary condition). If (2) is exact to (1) and
any local optimum of (1) is also globally optimal, then there
always exists a Lyapunov-like function V and a corresponding
family of paths {hx}x2X̂\X

satisfying (C1) and (C2).

Remark 3. Note that Theorem 3 is NOT the converse of The-
orem 1 in the very precise sense. There are a few differences
in their settings.

• Theorem 1 allows pseudo local optimum (in the conclu-
sion) of the theorem, while Theorem 3 disallows it (in the
premise).

• Theorem 3 relies on Assumption 1 while Theorem 1 does
not.

B. Proof Setup
In the rest of the section, we will prove Theorem 3.

From now on, we assume (2) is exact to (1) and any local
optimum of (1) is also globally optimal. We first have the
following definition and lemmas, which are the main reasons
we introduced Assumption 1.

Definition 11 (Whitney regularity [31], [32], [33]). For a
compact set U ⇢ Kn and a positive integer p, we say U

is p-regular if there exists C > 0 such that 8x, y 2 U ,
x, y can be joined by a rectifiable curve h in U satisfying
L(h)  Ckx� yk1/p.
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• C1, C2 eliminate genuine local optimal (a, d)
• C3 eliminates pseudo local optimum (c)

Local algorithm may converge to any local optimum:



No spurious local optima

Conditions: ∃ paths ℎ!: $ ∈ &' ∖ ' and a Lyapunov-like
function ) such that 

n C1: both ! ℎ!($) and & ℎ!($) are non-increasing for $ ∈ 0, 1 , and 
! ℎ!(0) > ! ℎ!(1)
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Lemma 3. If (1) is exact with respect to (2) and (1) has no
genuine local optima, then the feasible set of (1) is connected.

Proof. If X is not connected, then by definition X can be
partitioned into two disjoint non-empty closed sets X1 and X2

with X = X1[X2, which are hence both compact. Further we
let xi be any global optimum of minx2Xi f(x) for i = 1, 2.
Clearly x1 6= x2 and they are both local optima of (1).

If f(x1) = f(x2), then any convex combination of x1,
x2 must be a global optimum to (2). Since there is no path
in X that connects x1 and x2, there must be some convex
combination that is outside X . This contradicts the exactness
of relaxation.

If f(x1) 6= f(x2), without loss of generality we assume
f(x1) < f(x2), i.e., x2 is not a global optimum of (1). But
x2 is not a pseudo local optimum of (1) either, contradicting
Theorem 1. To see this, note that any point x0

2 X which is
connected to x2 via a path in X must also be a point in X2

and if f(x0) = f(x2) then x0 must be a local optimum of (1)
as well.

Corollary 2. Condition (C) implies that the feasible set of (1)
is connected.

Now we are in a good position to discuss some conditions
that rule out pseudo local optima and therefore guarantee that
any local optimum must be a global optimum.

Corollary 3. If all local optima of (1) are isolated, then
Condition (C) implies that any local optimum of (1) is a global
optimum.

Here, local optima being isolated means any local optimum
of (1) has an open neighborhood which contains no other local
optimum. The proof is straightforward as by definition isolated
local optimum could not be pseudo local optimum. In fact, in
this case the optimum can be proved to be also unique.

Another way to eliminate pseudo local optima is by
strengthening the monotonicity of f(hx(t)) in Condition (C).
Consider the following condition which is slightly stronger
than (C).

(C’) Condition (C) holds, and there exists k > 0 such that
8x 2 X̂ \ X , 80  t < s  1 we have

f(hx(t))� f(hx(s)) � kkhx(t)� hx(s)k. (3)

In Condition (C’), k · k could be any norm on Kn. As a
caveat, `0-“norm” is not allowed here as it is not a norm
since it does not satisfy k↵xk = |↵|kxk. Note that Condition
(C) already implies f(hx(t)) � f(hx(s)) � 0, while (C’)
strengthens this condition by enforcing a positive lower bound
depending on hx.

Theorem 2. If (C’) holds, then any local optimum of (1) must
be a global optimum.

Proof. Following the proof of Theorem 1, suppose x 2 X is a
local but not global optimum for (1). Then we have x = `(t†)
and could obtain a limit point of the sequence hm, denoted as
h. Since both sides of (3) are continuous in hm(t) and hm(s),

and the limits of hm(t) and hm(s) are h(t) and h(s), we must
have whenever h(t) 6= h(s),

f(h(t))� f(h(s)) � kkh(t)� h(s)k > 0.

Taking t = 0 we can conclude that h(0) (which is the same
point as x) is not a local optimum of (1).

IV. NECESSARY CONDITIONS

In this section we will study the necessary conditions for a
non-convex problem to have exact relaxation and no spurious
local optima simultaneously. It turns out the results are not
exactly the converses of Theorem 1 or Theorem 2, but in a
slightly weaker sense. Specifically, we show that if a non-
convex problem is known to have exact relaxation and no
spurious local optima simultaneously, then the Lyapunov-like
function and paths satisfying Condition (C) are guaranteed to
exist. However, it still may or may not be easy to find those
functions or paths in practice for a specific problem.

A. Results
Assumption 1. The feasible set X is semianalytic and the
cost function f is analytic.

We refer to [31] for more detailed definitions and properties
of semianalytic sets. This assumption is not restrictive for most
of the engineering problems. If K is chosen as C, then we
suggest to view all the complex functions as functions of real
variables by separating the real and imaginary parts, and the
space of Cn can be viewed as a shorthand for R2n in this
section.

Theorem 3 (necessary condition). If (2) is exact to (1) and
any local optimum of (1) is also globally optimal, then there
always exists a Lyapunov-like function V and a corresponding
family of paths {hx}x2X̂\X

satisfying (C1) and (C2).

Remark 3. Note that Theorem 3 is NOT the converse of The-
orem 1 in the very precise sense. There are a few differences
in their settings.

• Theorem 1 allows pseudo local optimum (in the conclu-
sion) of the theorem, while Theorem 3 disallows it (in the
premise).

• Theorem 3 relies on Assumption 1 while Theorem 1 does
not.

B. Proof Setup
In the rest of the section, we will prove Theorem 3.

From now on, we assume (2) is exact to (1) and any local
optimum of (1) is also globally optimal. We first have the
following definition and lemmas, which are the main reasons
we introduced Assumption 1.

Definition 11 (Whitney regularity [31], [32], [33]). For a
compact set U ⇢ Kn and a positive integer p, we say U

is p-regular if there exists C > 0 such that 8x, y 2 U ,
x, y can be joined by a rectifiable curve h in U satisfying
L(h)  Ckx� yk1/p.

Theorem [Zhou 2022]
n C1, C2       ⟸ all local optima of (1) globally optimal & (2) exact 
n C1, C2, C3 ⟹ all local optima of (1) globally optimal & (2) exact 

Applications: OPF, low rank SDP, …
Suitable for problems with convex cost but nonconvex feasible set
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Lemma 3. If (1) is exact with respect to (2) and (1) has no
genuine local optima, then the feasible set of (1) is connected.

Proof. If X is not connected, then by definition X can be
partitioned into two disjoint non-empty closed sets X1 and X2

with X = X1[X2, which are hence both compact. Further we
let xi be any global optimum of minx2Xi f(x) for i = 1, 2.
Clearly x1 6= x2 and they are both local optima of (1).

If f(x1) = f(x2), then any convex combination of x1,
x2 must be a global optimum to (2). Since there is no path
in X that connects x1 and x2, there must be some convex
combination that is outside X . This contradicts the exactness
of relaxation.

If f(x1) 6= f(x2), without loss of generality we assume
f(x1) < f(x2), i.e., x2 is not a global optimum of (1). But
x2 is not a pseudo local optimum of (1) either, contradicting
Theorem 1. To see this, note that any point x0

2 X which is
connected to x2 via a path in X must also be a point in X2

and if f(x0) = f(x2) then x0 must be a local optimum of (1)
as well.

Corollary 2. Condition (C) implies that the feasible set of (1)
is connected.

Now we are in a good position to discuss some conditions
that rule out pseudo local optima and therefore guarantee that
any local optimum must be a global optimum.

Corollary 3. If all local optima of (1) are isolated, then
Condition (C) implies that any local optimum of (1) is a global
optimum.

Here, local optima being isolated means any local optimum
of (1) has an open neighborhood which contains no other local
optimum. The proof is straightforward as by definition isolated
local optimum could not be pseudo local optimum. In fact, in
this case the optimum can be proved to be also unique.

Another way to eliminate pseudo local optima is by
strengthening the monotonicity of f(hx(t)) in Condition (C).
Consider the following condition which is slightly stronger
than (C).

(C’) Condition (C) holds, and there exists k > 0 such that
8x 2 X̂ \ X , 80  t < s  1 we have

f(hx(t))� f(hx(s)) � kkhx(t)� hx(s)k. (3)

In Condition (C’), k · k could be any norm on Kn. As a
caveat, `0-“norm” is not allowed here as it is not a norm
since it does not satisfy k↵xk = |↵|kxk. Note that Condition
(C) already implies f(hx(t)) � f(hx(s)) � 0, while (C’)
strengthens this condition by enforcing a positive lower bound
depending on hx.

Theorem 2. If (C’) holds, then any local optimum of (1) must
be a global optimum.

Proof. Following the proof of Theorem 1, suppose x 2 X is a
local but not global optimum for (1). Then we have x = `(t†)
and could obtain a limit point of the sequence hm, denoted as
h. Since both sides of (3) are continuous in hm(t) and hm(s),

and the limits of hm(t) and hm(s) are h(t) and h(s), we must
have whenever h(t) 6= h(s),

f(h(t))� f(h(s)) � kkh(t)� h(s)k > 0.

Taking t = 0 we can conclude that h(0) (which is the same
point as x) is not a local optimum of (1).

IV. NECESSARY CONDITIONS

In this section we will study the necessary conditions for a
non-convex problem to have exact relaxation and no spurious
local optima simultaneously. It turns out the results are not
exactly the converses of Theorem 1 or Theorem 2, but in a
slightly weaker sense. Specifically, we show that if a non-
convex problem is known to have exact relaxation and no
spurious local optima simultaneously, then the Lyapunov-like
function and paths satisfying Condition (C) are guaranteed to
exist. However, it still may or may not be easy to find those
functions or paths in practice for a specific problem.

A. Results
Assumption 1. The feasible set X is semianalytic and the
cost function f is analytic.

We refer to [31] for more detailed definitions and properties
of semianalytic sets. This assumption is not restrictive for most
of the engineering problems. If K is chosen as C, then we
suggest to view all the complex functions as functions of real
variables by separating the real and imaginary parts, and the
space of Cn can be viewed as a shorthand for R2n in this
section.

Theorem 3 (necessary condition). If (2) is exact to (1) and
any local optimum of (1) is also globally optimal, then there
always exists a Lyapunov-like function V and a corresponding
family of paths {hx}x2X̂\X

satisfying (C1) and (C2).

Remark 3. Note that Theorem 3 is NOT the converse of The-
orem 1 in the very precise sense. There are a few differences
in their settings.

• Theorem 1 allows pseudo local optimum (in the conclu-
sion) of the theorem, while Theorem 3 disallows it (in the
premise).

• Theorem 3 relies on Assumption 1 while Theorem 1 does
not.

B. Proof Setup
In the rest of the section, we will prove Theorem 3.

From now on, we assume (2) is exact to (1) and any local
optimum of (1) is also globally optimal. We first have the
following definition and lemmas, which are the main reasons
we introduced Assumption 1.

Definition 11 (Whitney regularity [31], [32], [33]). For a
compact set U ⇢ Kn and a positive integer p, we say U

is p-regular if there exists C > 0 such that 8x, y 2 U ,
x, y can be joined by a rectifiable curve h in U satisfying
L(h)  Ckx� yk1/p.
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Is Condition C necessary?
When would such Lyapunov-like function V exist?

Theorem

When f is analytic and X is semi-analytic, then
A and l.o. is g.o. ) C

16 / 23

C1, C2

C3



Application to OPF
Conditions for

Exact
Relaxation and

Local
Optimality

Fengyu Zhou

Motivation

Setup and
Preliminaries

Main Results

Applications

Remarks

Application to OPF

Non-convex problem:

min
s,v ,`,S

f (s)

s.t. convex constr.

vj`jk = |Sjk |2

Relaxed problem:

min
s,v ,`,S

f (s)

s.t. convex constr.

vj`jk � |Sjk |2

Construction

V :=
P
jk

vk`jk � |Sjk |2

hx : linearly decrease `jk and linearly adjust s, S
accordingly.
This construction satisfies both C and C*.

Theorem

If there are no lower bounds for sj , i.e., bus
injections, then any local optimum of the original
non-convex OPF is also a global optimum.

First result on the local optimality for non-convex OPF problem. Zhou F, Low SH.

CDC 2020
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Application to OPF

Non-convex problem:

min
s,v ,`,S

f (s)

s.t. convex constr.

vj`jk = |Sjk |2

Relaxed problem:

min
s,v ,`,S

f (s)

s.t. convex constr.

vj`jk � |Sjk |2

Construction (a 2-bus example)

• V := v1`12 � |S12|2

• For x 2 X̂ \ X , we have |S12|2 � v1`12 < 0.

• Let � be the positive root of
|z12|2
4 a2+

�
v1�Re(z12SH

12)
�
a+ |S12|2� v1`12

• Consider the path:

s̃j(t) = sj �
t

2
z12�� t

2
z12�,

ṽj(t) = vj ,

˜̀
12(t) = `12 � t�,

S̃12(t) = S12 �
t

2
z12�.

18 / 23Construction satisfies C1, C2, C3
• SOCP relaxation is exact
• Local optima are globally optimal



Summary
OPF is nonconvex & NP hard

OPF is “easy” in practice
n Semidefinite relaxations often exact
n Local algorithms often globally optimal

Analytical properties
n Exact relaxation
n No spurious local optima


