Power Systems Analysis

Chapter 6 Branch flow models

Outline

1. General network
2. Radial network
3. Equivalence
4. Backward forward sweep
5. Linearized model

Outline

1. General network

- Complex form power flow equations
- Real form power flow equations

2. Radial network
3. Equivalence
4. Backward forward sweep
5. Linearized model

General network

1. Network $G:=(\bar{N}, E)$

- $\bar{N}:=\{0\} \cup N:=\{0\} \cup\{1, \ldots, N\}:$ buses/nodes
- $E \subseteq \bar{N} \times \bar{N}$: lines/links/edges

2. Each line (j, k) is parameterized by $\left(y_{j k}^{s}, y_{j k}^{m}, y_{k j}^{m}\right)$

- $y_{j k}^{s}$: series admittance
- $y_{j k}^{m}, y_{k j}^{m}$: shunt admittances, generally different

General network

1. We will introduce several BFM models

- General: complex form, real form
- Radial: with/without shunt admits.

2. Each model defined by

- Set of variables
- Set of power flow equations relating these variables

3. These models are equivalent to each
 other, and to BIM

General network

Branch currents

Sending-end currents

$$
I_{j k}=y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j}, \quad I_{k j}=y_{j k}^{s}\left(V_{k}-V_{j}\right)+y_{k j}^{m} V_{k},
$$

Bus injection model: relate nodal variables s and V

$$
s_{j}=\sum_{k: j \sim k}\left(y_{j k}^{s}\right)^{H}\left(\left|V_{j}\right|^{2}-V_{j} V_{k}^{H}\right)+\left(y_{j j}^{m}\right)^{H}\left|V_{j}\right|^{2}
$$

General network

Complex form

Branch flow model: includes branch vars as well

- Branch currents $\left(I_{j k}, I_{k j}\right)$
- Branch power $\left(S_{j k}, S_{k j}\right)$

$$
\begin{aligned}
s_{j} & =\sum_{k: j \sim k} S_{j k} \\
S_{j k} & =V_{j} I_{j k}^{H}, \quad S_{k j}=V_{k} I_{k j}^{H} \\
I_{j k} & =y_{j k}^{s}\left(V_{j}-V_{k}\right)+y_{j k}^{m} V_{j} \\
I_{k j} & =y_{k j}^{s}\left(V_{k}-V_{j}\right)+y_{k j}^{m} V_{k}
\end{aligned}
$$

This model is equivalent to BIM (later)

- Serves as a bridge to BIM

General network

Real form

Key feature of original Dist Flow equations (branch flow model) of Baran-Wu1989

- No voltage/current phase angles
- Suitable for radial networks (tree topology)
- We generalize to meshed networks

For each bus j

- $s_{j}:=\left(p_{j}, q_{j}\right)$ or $s_{j}:=p_{j}+i q_{j}:$ power injection
- v_{j} : squared voltage magnitude

For each branch (j, k)

- $S_{j k}:=\left(P_{j k}, Q_{j k}\right)$ or $S_{j k}:=P_{j k}+i Q_{j k}$: sending-end power $j \rightarrow k$; also $S_{k j}$ from $k \rightarrow j$
- $\left(\ell_{j k}, \ell_{k j}\right)$: squared magnitude of sending-end current $j \rightarrow k$, and $k \rightarrow j$

General network

Real form

The variables v_{i} and $\left(\ell_{j k}, \ell_{k j}\right)$ contain no angle information
Angle info must be recoverable from a power flow solution $x:=(s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6 M}$

- This is easy for radial networks
- Trickier for meshed networks

General network

Real form

For each line (j, k) let:

$$
\begin{aligned}
z_{j k}^{s} & :=\left(y_{j k}^{s}\right)^{-1}=: \quad z_{k j}^{s} \\
\alpha_{j k} & :=1+z_{j k}^{s} y_{j k}^{m},
\end{aligned} \quad \alpha_{k j}:=1+z_{k j}^{s} y_{k j}^{m}
$$

$\alpha_{j k}=\alpha_{k j}$ if and only if $y_{j k}^{m}=y_{k j}^{m}$
$\alpha_{j k}=\alpha_{k j}=1$ if and only if $y_{j k}^{m}=y_{k j}^{m}=0$

General network

Real form

For each line (j, k) let:

$$
\begin{aligned}
z_{j k}^{s} & :=\left(y_{j k}^{s}\right)^{-1}=: \quad z_{k j}^{s} \\
\alpha_{j k} & :=1+z_{j k}^{s} y_{j k}^{m},
\end{aligned} \quad \alpha_{k j}:=1+z_{k j}^{s} y_{k j}^{m}
$$

Given $x:=(s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6 M}$ define nonlinear functions:

$$
\begin{aligned}
& \beta_{j k}(x):=\angle\left(\alpha_{j k}^{H} v_{j}-\left(z_{j k}^{s}\right)^{H} S_{j k}\right) \\
& \beta_{k j}(x):=\angle\left(\alpha_{k j}^{H} v_{k}-\left(z_{j k}^{s}\right)^{H} S_{k j}\right)
\end{aligned}
$$

If x is a power flow solution, then $\left(\beta_{j k}(x), \beta_{k j}(x)\right)$ are angle differences across (j, k)

General network

Real form

$$
s_{j}=\sum_{k: j \sim k} S_{j k}
$$

power balance

General network

Real form

$$
\begin{array}{rlr}
s_{j} & =\sum_{k: j \sim k} S_{j k} & \text { power balance } \\
\left|S_{j k}\right|^{2} & =v_{j} \ell_{j k}, \quad\left|S_{k j}\right|^{2}=v_{k} l_{k j} \quad & \text { branch power magnitude }
\end{array}
$$

$$
\begin{array}{cc}
\text { The complex notation is only shorthand for real } \\
p_{j}=\sum_{k} P_{j k}, & q_{j}=\sum_{k} Q_{j k} \\
v_{j} \ell_{j k}=P_{j k}^{2}+Q_{j k}^{2}, & v_{k} \ell_{k j}=P_{k j}^{2}+Q_{k j}^{2}
\end{array}
$$

General network

Real form

$$
\begin{aligned}
s_{j} & =\sum_{k: j \sim k} S_{j k} & \text { power balance } \\
\left|S_{j k}\right|^{2} & =v_{j} \ell_{j k}, \quad\left|S_{k j}\right|^{2}=v_{k} \ell_{k j} & \text { branch power magnitude } \\
\left|\alpha_{j k}\right|^{2} v_{j}-v_{k} & =2 \operatorname{Re}\left(\alpha_{j k}\left(z_{j k}^{s}\right)^{H} S_{j k}\right)-\left|z_{j k}^{s}\right|^{2} \ell_{j k} & \text { Onm's law, KCL (magnitude) } \\
\left|\alpha_{k j}\right|^{2} v_{k}-v_{j} & =2 \operatorname{Re}\left(\alpha_{k j}\left(z_{k j}^{s}\right)^{H} S_{k j}\right)-\left|z_{k j}^{s}\right|^{2} \ell_{k j} &
\end{aligned}
$$

General network

Real form

$$
\begin{array}{ccl}
s_{j} & =\sum_{k: j \sim k} S_{j k} & \text { power balance } \\
\left|S_{j k}\right|^{2} & =v_{j} \ell_{j k}, \quad\left|S_{k j}\right|^{2}=v_{k} \ell_{k j} & \text { branch power magnitude } \\
\left|\alpha_{j k}\right|^{2} v_{j}-v_{k} & =2 \operatorname{Re}\left(\alpha_{j k}\left(z_{j k}^{s}\right)^{H} S_{j k}\right)-\left|z_{j k}^{s}\right|^{2} \ell_{j k} & \text { Ohm's law, KCL (magnitude) } \\
\left|\alpha_{k j}\right|^{2} v_{k}-v_{j}=2 \operatorname{Re}\left(\alpha_{k j}\left(z_{k j}^{s}\right)^{H} S_{k j}\right)-\left|z_{k j}^{s}\right|^{2} \ell_{k j} & \\
\in \mathbb{R}^{N+1} \text { s.t. } \beta_{i k}(x)=\theta_{j}-\theta_{k} & & \text { cycle condition }
\end{array}
$$

there exists $\theta \in \mathbb{R}^{N+1}$

$$
\begin{array}{ll}
\text { s.t. } & \beta_{j k}(x)=\theta_{j}-\theta_{k} \\
& \beta_{k j}(x)=\theta_{k}-\theta_{j}
\end{array}
$$

General network

Real form

Cycle condition on x is highly nonlinear

$$
\begin{aligned}
& \beta_{j k}(x):=\angle\left(\alpha_{j k}^{H} v_{j}-\left(z_{j k}^{s}\right)^{H} S_{j k}\right) \\
& \beta_{k j}(x):=\angle\left(\alpha_{k j}^{H} v_{k}-\left(z_{j k}^{s}\right)^{H} S_{k j}\right) \\
& \beta(x)=\left[\begin{array}{c}
C^{T} \\
-C^{T}
\end{array}\right] \theta \text { for some } \theta \in \mathbb{R}^{N+1}
\end{aligned}
$$

It ensures angle consistency of a power flow solution x

General network

Real form

Any $x:=(s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6 M}$ that satisfies power flow equations with

$$
v \geq 0, \quad \ell \geq 0
$$

is a power flow solution

Branch flow models have been most useful for radial networks
All BFMs for radial networks are special cases of this model

- Tree topology
- Tree topology with zero shunt admittances $y_{j k}^{m}=y_{k j}^{m}=0$
- Tree topology with linear approximations

Outline

1. General network
2. Radial network

- With shunt admittances
- Without shunt admittances

3. Equivalence
4. Backward forward sweep
5. Linearized model

Radial network

Cycle condition

Major simplification for radial network: nonlinear cycle condition becomes linear in x

$$
\begin{aligned}
& \beta_{j k}(x):=\angle\left(\alpha_{j k}^{H} v_{j}-\left(z_{j k}^{s}\right)^{H} S_{j k}\right) \\
& \beta_{k j}(x):=\angle\left(\alpha_{k j}^{H} v_{k}-\left(z_{j k}^{s}\right)^{H} S_{k j}\right) \\
& \beta(x)=\left[\begin{array}{c}
C^{T} \\
-C^{T}
\end{array}\right] \theta \text { for some } \theta \in \mathbb{R}^{N+1}
\end{aligned}
$$

general network

Radial network

With shunt admittances

$$
\begin{array}{rlr}
s_{j} & =\sum_{k: j \sim k} S_{j k} & \text { power balance } \\
\left|S_{j k}\right|^{2} & =v_{j} \ell_{j k}, \quad\left|S_{k j}\right|^{2}=v_{k} \ell_{k j} & \text { branch power magnitude } \\
\left|\alpha_{j k}\right|^{2} v_{j}-v_{k} & =2 \operatorname{Re}\left(\alpha_{j k}\left(z_{j k}^{s}\right)^{H} S_{j k}\right)-\left|z_{j k}^{s}\right|^{2} \ell_{j k} & \text { Ohm's law, KCL (magnitude) } \\
\left|\alpha_{k j}\right|^{2} v_{k}-v_{j} & =2 \operatorname{Re}\left(\alpha_{k j}\left(z_{k j}^{s}\right)^{H} S_{k j}\right)-\left|z_{k j}^{s}\right|^{2} \ell_{k j} & \\
\hline \alpha_{j k}^{H} v_{j}-\left(z_{j k}^{s}\right)^{H} S_{j k} & =\left(\alpha_{k j}^{H} v_{k}-\left(z_{k j}^{s}\right)^{H} S_{k j}\right)^{H} & \text { cycle condition }
\end{array}
$$

Radial network
 With shunt admittances

Any $x:=(s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6 M}$ that satisfies power flow equations with

$$
v \geq 0, \quad \ell \geq 0
$$

is a power flow solution

All equations are linear in x, except the quadratic equalities

$$
\left|S_{j k}\right|^{2}=v_{j} \ell_{j k}, \quad\left|S_{k j}\right|^{2}=v_{k} \ell_{k j}
$$

This can be relaxed to second-order cone constraint in OPF (later)

General network

Angle recovery

Treat network $G:=(\bar{N}, E)$ as directed graph with arbitrary orientation

- (Re-)Define branch variables $\left(S_{j k}, \ell_{j k}\right)$ only in direction of lines (j, k)
- (Re-)Define $\beta(x):=\left(\beta_{j k}(x),(j, k) \in E\right)$ where

$$
\beta_{j k}(x):=\angle\left(\alpha_{j k}^{H} v_{j}-\left(z_{j k}^{s}\right)^{H} S_{j k}\right)
$$

Any power flow solution $x:=(s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6 M}$ implies

$$
\beta(x)=C^{T} \theta \text { for some } \theta \in \mathbb{R}^{N+1}
$$

Angle recovery:

$$
V_{j}=\sqrt{v_{j}} e^{i \theta_{j}}, \quad I_{j k}=\sqrt{\ell_{j k}} e^{i\left(\theta_{j}-\angle S_{j k}\right)}
$$

Radial network
 Without shunt admittances

When shunt admittances $y_{j k}^{m}=y_{k j}^{m}=0$

- $\alpha_{j k}=\alpha_{k j}=1$
- $\ell_{k j}=\ell_{j k}$ and $S_{k j}+S_{j k}=z_{j k}^{s} \ell_{j k}$

Can use directed graph with vars $\left(\ell_{j k}, S_{j k}\right)$ defined only in direction of lines (j, k)
Substitute $\left(\ell_{k j}, S_{k j}\right)$ in terms of $\left(\ell_{j k}, S_{j k}\right)$ into previous power flow equations yields original
DistFlow equations of [Baran-Wu 1989]

Radial network

Without shunt admittances

DistFlow equations [Baran-Wu 1989] (down direction):

$$
\begin{array}{rlr}
\sum_{k: j \rightarrow k} S_{j k}=S_{i j}-z_{i j} \ell_{i j}+s_{j} & \text { power balance } \\
v_{j}-v_{k} & =2 \operatorname{Re}\left(z_{j k}^{H} S_{j k}\right)-\left|z_{j k}\right|^{2} \ell_{j k} & \\
\text { Ohm's law, KCL (magnitude) } \\
v_{j} \ell_{j k} & =\left|S_{j k}\right|^{2} & \text { branch power magnitude }
\end{array}
$$

Radial network

Without shunt admittances

DistFlow equations [Baran-Wu 1989] (down direction):

$$
\begin{aligned}
\sum_{k: j \rightarrow k} S_{j k} & =S_{i j}-z_{i j} \ell_{i j}+s_{j} & & \text { power balance } \\
v_{j}-v_{k} & =2 \operatorname{Re}\left(z_{j k}^{H} S_{j k}\right)-\left|z_{j k}\right|^{2} \ell_{j k} & & \text { Ohm's law, KCL (magnitude) } \\
v_{j} \ell_{j k} & =\left|S_{j k}\right|^{2} & & \text { branch power magnitude }
\end{aligned}
$$

All equations are linear in x, except the quadratic equalities

$$
v_{j} \ell_{j k}=\left|S_{j k}\right|^{2}
$$

All lines point away from bus 0

Outline

1. General network

2. Radial network
3. Equivalence
4. Backward forward sweep
5. Linearized model

Equivalence Recap

Bus injection model

- General networks: complex form, polar form, Cartesian form

Branch flow model

- General networks: complex form, real form
- Radial networks: with / without shunt admittances

All these models are equivalent

- In what sense?
- They consist of different equations with different variables in different domains

Equivalence

Solution set

Bus injection model

$$
s_{j}=\sum_{k: j \sim k}\left(y_{j k}^{s}\right)^{H}\left(\left|V_{j}\right|^{2}-V_{j} V_{k}^{H}\right)+\left(y_{j j}^{m}\right)^{H}\left|V_{j}\right|^{2}
$$

Solution set

$$
\mathbb{V}:=\left\{(s, V) \in \mathbb{C}^{2(n+1)} \mid V \text { satisfies BIM }\right\}
$$

Equivalence

Solution set

Branch flow models: solution sets

$$
\begin{aligned}
\tilde{\mathbb{X}} & :=\left\{\tilde{x}:(s, V, I, S) \in \mathbb{C}^{2(N+1)+4 M} \mid \tilde{x} \text { satisfies BFM complex }\right\} \\
\mathbb{X}_{\text {meshed }} & :=\left\{x:(s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6 M)} \mid x \text { satisfies BFM real }\right\} \\
\mathbb{X}_{\text {tree }} & :=\left\{x:(s, v, \ell, S) \in \mathbb{R}^{9 N+3} \mid x \text { satisfies BFM radial }\right\} \\
\mathbb{T}_{0} & :=\left\{x:(s, v, \ell, S) \in \mathbb{R}^{6 N+3} \mid x \text { satisfies BFM radial zero } y_{j k}^{m}\right\}
\end{aligned}
$$

Definition: Two sets A and B are equivalent $(A \equiv B)$ if there is a bijection between them

Equivalence

Solution set

Theorem

Suppose G is connected

1. $\mathbb{V} \equiv \tilde{\mathbb{X}} \equiv \mathbb{X}_{\text {meshed }}$

2. If G is a tree, then $\mathbb{X}_{\text {meshed }} \equiv \mathbb{X}_{\text {tree }}$
3. If G is a tree and $y_{j k}^{m}=y_{k j}^{m}=0$, then $\mathbb{X}_{\text {tree }} \equiv \mathbb{T}_{0} \equiv \hat{\mathbb{T}}_{0}$

Equivalence

Bus injection models and branch flow models are equivalent

- Any result proved in one model holds also in another model

Some results are easier to formulate / prove in one model than the other

- BIM: semidefinite relaxation of OPF (later)
- BFM: some exact relation proofs

Should freely use whichever is more convenient for problem at hand

BFM is particularly suitable for modeling distribution systems

- Tree topology allows efficient computation of power flows (BFS)
- Seems to be much more numerically stable than BIM for large networks
- Models and relaxations extend to unbalanced 3ϕ networks

Outline

1. General network

2. Radial network
3. Equivalence
4. Backward forward sweep

- For radial networks

5. Linearized model

Backward forward sweep

Efficient solution method for power flow equations

- Applicable for radial networks

Partition solution (x, y) into two groups of variables x and y
Each round of spatial iteration consists of a backward sweep and a forward sweep

- Given y, compute each component x_{j} iteratively from leafs to root (backward)
- Given x, compute each component y_{j} iteratively from root to leaves (forward)

Iterate until stopping criterion
Different BFS methods differ in how to partition variables into x and y and the associated power flow equations

Backward forward sweep

Example

Use complex form BFM

Given: V_{0} and $s:=\left(s_{j}, j \in N\right)$
Compute: $V:=\left(V_{j}, j \in N\right)$ and currents $I^{s}:=\left(I_{j k}^{s},(j, k) \in E\right)$ through series impedance

- All other variables $I_{j k}=I_{j k}^{s}+y_{j k}^{m} V_{j}, I_{k j}, S_{j k}, S_{k j}$ can then be computed
- Can also compute V_{j} and $I_{j k}$ instead (exercise)
- Advantage: $I_{j k}^{s}=-I_{k j}^{s}$

Backward forward sweep

Example

Power flow equation

$$
s_{j}=V_{j} I_{j i}^{H}+\sum_{k: j \rightarrow k} V_{j} I_{j k}^{H}=V_{j}\left(\left(I_{j i}^{s}+y_{j i}^{m} V_{j}\right)^{H}+\sum_{k: j \rightarrow k}\left(I_{j k}^{s}+y_{j k}^{m} V_{j}\right)^{H}\right)
$$

Substitute $I_{k j}^{S}=-I_{j k}^{S}$ to write all vars in direction of line $j \rightarrow k$:

$$
\left(\frac{s_{j}}{V_{j}}\right)^{H}=-I_{i j}^{s}+y_{j j}^{m} V_{j}+\sum_{k: j \rightarrow k} I_{j k}^{s}
$$

where $y_{j j}^{m}:=\sum_{k} y_{j k}^{m}$

Backward forward sweep

Example

Rewrite in spatially recursive structure

$$
I_{i j}^{s}=\sum_{k: j \rightarrow k} I_{j k}^{s}-\left(\left(\frac{s_{j}}{V_{j}}\right)^{H}-y_{j j}^{m} V_{j}\right)
$$

Spatial iteration: propagating from leafs towards root (bus 0) in reverse BFS order

- Given all voltages $V:=\left(V_{j}, j \in \bar{N}\right)$
- Given all currents $I_{j k}^{S}$ in previous layer

- Compute currents $I_{i j}^{S}$ in current layer

Backward forward sweep

Example

Write in spatially recursive structure

$$
V_{j}=V_{i}-z_{i j}^{s} I_{i j}^{s},
$$

Spatial iteration: propagating from root (bus 0) towards leafs in BFS order

- Given all currents $I^{s}:=\left(I_{i j}^{s},(i, j) \in E\right)$
- Given all voltages V_{i} in previous layer
- Compute voltages V_{j} in current layer

Backward forward sweep

Summary

Input: voltage $V_{0}=1 \mathrm{pu}$ and injections $\left(s_{i}, i \in N\right)$.
Output: currents $\left(I_{j k}^{S}, j \rightarrow k \in E\right)$ and voltages $\left(V_{i}, i \in N\right)$.

1. Initialization.

- $V_{0}(t):=1$ pu at bus $j=0$ for all iterations $t=1,3, \ldots$.
- $V_{j}(0):=1$ pu at all buses $j \in N$ for iteration $t=0$.

Backward forward sweep

Summary

2. Backward forward sweep: iterate $t=1,3,5, \ldots$ till stopping criterion
(a) Backward sweep. Starting from the leaf nodes and working towards bus 0 , compute

$$
I_{i j}^{s}(t) \leftarrow \sum_{k: j \rightarrow k} I_{j k}^{s}(t)-\left(\left(\frac{s_{j}}{V_{j}(t-1)}\right)^{H}-y_{j j}^{m} V_{j}(t-1)\right), \quad i \rightarrow j \in E
$$

(b) Forward sweep. Starting front bus 0 and working towards the leaf nodes, compute

$$
V_{j}(t+1)=V_{i}(t+1)-z_{i j}^{S} I_{i j}^{S}(t), \quad j \in N
$$

3. Output: $\quad I_{j k}^{s}:=I_{j k}^{S}(t), \quad V_{i}:=V_{i}(t+1)$

Backward forward sweep

General formulation

Backward sweep: let

- $\mathrm{T}_{i}^{\circ}:=\{$ buses in subtree rooted at i, excluding $i\}$
- $x_{\mathrm{T}_{i}^{\circ}}:=\left(x_{j}, j \in \mathrm{~T}_{i}^{\circ}\right)$
x satisfies a spatially recursive structure if

$$
x_{i}=f_{i}\left(x_{T_{i}^{*}} ; y\right)
$$

Backward forward sweep

General formulation

Forward sweep: let

- $\mathrm{P}_{i}^{\circ}:=\{$ buses in path from root to i, inc. 0 but exc. $i\}$
- $y_{\mathrm{P}_{i}^{\circ}}:=\left(y_{j}, j \in \mathrm{P}_{i}^{\circ}\right)$
y satisfies a spatially recursive structure if

$$
y_{i}=g_{i}\left(y_{\mathrm{P}_{i}^{\circ}} ; x\right)
$$

Backward forward sweep

General formulation

while stopping criterion not met do
(a) $t \leftarrow t+1 ; y_{0}(t) \leftarrow y_{0}$;
(b) Backward sweep: for i starting from the leaf nodes and iterating towards bus 0 do

$$
x_{i}(t) \leftarrow f_{i}\left(x_{\top_{i}^{\circ}}(t) ; y(t-1)\right), \quad i \in \bar{N}
$$

(c) Forward sweep: for i starting front bus 0 and iterating towards the leaf nodes do

$$
y_{i}(t+1) \leftarrow g_{i}\left(y_{\mathrm{P}_{i}^{\circ}}(t+1) ; x(t)\right), \quad i \in N
$$

Backward forward sweep

Open question

Convergence analysis

Outline

1. General network

2. Radial network
3. Equivalence
4. Backward forward sweep
5. Linearized model

- Analytical solution
- Bounds on nonlinear solutions
- Application: decentralized volt/var control

Linearized model

Linear DistFlow equations

For radial networks
Set $y_{j k}^{m}=y_{k j}^{m}=0, \quad \ell_{j k}=0$
Linear DistFlow equations [Baran-Wu 1989]

$$
\begin{aligned}
\sum_{k: j \rightarrow k} S_{j k} & =\sum_{i: i \rightarrow j} S_{i j}+s_{j} \\
v_{j}-v_{k} & =2 \operatorname{Re}\left(z_{j k}^{H} S_{j k}\right)
\end{aligned}
$$

Linearized model

Linear DistFlow equations

In vector form:
bus-by-line incidence matrix

$$
C_{j l}= \begin{cases}1 & \text { if } l=j \rightarrow k \text { for some bus } k \\ -1 & \text { if } l=i \rightarrow j \text { for some bus } i \\ 0 & \text { otherwise }\end{cases}
$$

Linear DistFlow equations

$$
\begin{aligned}
s & =C S \\
C^{T} v & =2\left(D_{r} P+D_{x} Q\right)
\end{aligned}
$$

where $D_{r}:=\operatorname{diag}\left(r_{l}, l \in E\right), \quad D_{x}:=\operatorname{diag}\left(x_{l}, l \in E\right)$

$$
\begin{aligned}
& \sum_{k: j \rightarrow k} S_{j k}=\sum_{i: i \rightarrow j} S_{i j}+s_{j} \\
& v_{j}-v_{k}=2 \operatorname{Re}\left(z_{j k}^{H} S_{j k}\right)
\end{aligned}
$$

Linearized model

Linear DistFlow equations

Linear DistFlow can be solved explicitly
Given: $v_{0}=1$ pu, injection $\hat{s}:=\left(s_{j}, j \in N\right)$
Determine: line power $S:=\left(S_{j k}, j \rightarrow k \in E\right)$, voltage $\hat{v}:=\left(v_{j}, j \in N\right)$, injection s_{0}
Key observation: Reduced incidence matrix has full rank
G connected $\Longrightarrow(N+1) \times N$ incidence matrix C has rank N
Decompose $C=:\left[\begin{array}{c}-c_{0}^{T}- \\ \hat{C}\end{array}\right]$
G tree topology $\Longrightarrow N \times N$ reduced incidence matrix \hat{C} is invertible

Linearized model

Linear DistFlow solution

Linear DistFlow:

$$
\begin{aligned}
\begin{aligned}
\hat{s} & =\hat{C} S \\
v_{0} c_{0}+\hat{C}^{T} \hat{v} & =2\left(D_{r} P+D_{x} Q\right) \\
\text { and } s_{0} & =c_{0}^{T} S
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
s & =C S \\
C^{T} v & =2\left(D_{r} P+D_{x} Q\right)
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& S=\hat{C}^{-1} \hat{S} \\
& \hat{v}=v_{0} 1+2(R \hat{p}+X \hat{q}) \quad \quad \text { voltages }=v_{0}+\text { correction term }(\hat{p}, \hat{q}) \\
& \text { where } R:=\hat{C}^{-T} D_{r} \hat{C}^{-1}, \quad X:=\hat{C}^{-T} D_{x} \hat{C}^{-1} \quad \text { are positive definite matrices }
\end{aligned}
$$

Linearized model

Bounds on nonlinear solution

Corollary

Fix v_{0} and injections $\hat{s} \in \mathbb{R}^{2 N}$ at non-reference buses. Let (v, ℓ, S) and $\left(v^{\text {lin }}, \ell^{\text {lin }}, S^{\text {lin }}\right)$ be a solution of nonlinear and linear DistFlow equations respectively (in the down direction).

1. $S_{i j} \geq S_{i j}^{\text {lin }} \quad$ Linear DistFlow ignores line losses and
2. $v_{j} \leq v_{j}^{\text {lin }}$

Outline

1. General network

2. Radial network
3. Equivalence
4. Backward' forward sweep
5. Linearized model

- Analytical solution
- Bounds on nonlinear solutions
- Application: decentralized volt/var control

Linearized model

Application: volt/var control

Volv/var control: control reactive power injections q to stabilize voltages \hat{v}
How should q adapt as voltages fluctuate?

Linearized model

Application: volt/var control

Local memoryless feedback control:

$$
q_{j}(t+1)=\left[u_{j}\left(v_{j}(t)-v_{j}^{\mathrm{ref}}\right)\right]_{U_{j}}
$$

$$
U_{j}:=\left\{q_{j}: \underline{q}_{j} \leq q_{j} \leq \bar{q}_{j}\right\}
$$

Adapt reactive power $q_{i}(t)$ to drive voltage $v_{j}(t)$ towards target $v_{j}^{\text {ref }}$
Control $q_{j}(t+1)$ depends only on:

- Feedback: measured system state $v(t)$
- Memoryless: latest voltage $v(t)$ at time t, not history $v(s), s<t$

- Local: local voltage $v_{j}(t)$ at bus j, not other voltages $v_{k}(t)$

Linearized model

Application: volt/var control

Local memoryless feedback control:

$$
q_{j}(t+1)=\left[u_{j}\left(v_{j}(t)-v_{j}^{\mathrm{ref}}\right)\right]_{U_{j}}
$$

$$
U_{j}:=\left\{q_{j}: \underline{q}_{j} \leq q_{j} \leq \bar{q}_{j}\right\}
$$

Adapt reactive power $q_{i}(t)$ to drive voltage $v_{j}(t)$ towards target $v_{j}^{\text {ref }}$

How does the closed-loop system behave?

- under this simple local control
- if network is described by Linear DistFlow

Linearized model

Application: volt/var control

Linear DistFlow model describes how voltages (linearly) depend on control q :

$$
v(q)=v_{0} 1+2(R p+X q)=2 X q+\tilde{v}
$$

where $\tilde{v}:=v_{0} 1+2 R p$
Since

$$
\frac{\partial v_{j}}{\partial q_{j}}=2 X_{j j}=\sum_{(i, k) \in \mathrm{P}_{j}} x_{i k}>0
$$

it justifies choosing u_{j} to be a decreasing function of $v_{j}(t)-v_{j}^{\text {ref }}$

Linearized model

Application: volt/var control

Assume measured voltage is given by Linear DistFlow, i.e., $v_{j}(t)=v_{j}(q(t))$
Closed-loop system is discrete-time dynamical system:

$$
q_{j}(t+1)=\left[u_{j}\left(v_{j}(q(t))-v_{j}^{\mathrm{ref}}\right)\right]_{U_{j}}
$$

where $v(q)=2 X q+\tilde{v}$
Definition: q^{*} is a fixed point or equilibrium point if $q^{*}=\left[u\left(v\left(q^{*}\right)-v^{\mathrm{ref}}\right)\right]_{U_{j}}$

Linearized model

Application: volt/var control

Assume measured voltage is given by Linear DistFlow, i.e., $v_{j}(t)=v_{j}(q(t))$
Closed-loop system is discrete-time dynamical system:

$$
q_{j}(t+1)=\left[u_{j}\left(v_{j}(q(t))-v_{j}^{\mathrm{ref}}\right)\right]_{U_{j}}
$$

where $v(q)=2 X q+\tilde{v}$

What are convergence and optimality properties of closed-loop system ?

Linearized model

Application: volt/var control

Closed-loop system is discrete-time dynamical system:

$$
q_{j}(t+1)=\left[u_{j}\left(v_{j}(q(t))-v_{j}^{\mathrm{ref}}\right)\right]_{U_{j}}
$$

where $v(q)=2 X q+\tilde{v}$

Assumptions

- u_{j} are differentiable and $\left|u_{j}^{\prime}\left(v_{j}\right)\right| \leq \alpha_{j}$
- u_{j} are strictly decreasing

Linearized model

Application: volt/var control

Theorem (Convergence)
If largest singular value $\sigma_{\max }(A X)<1 / 2$ then

$$
A:=\operatorname{diag}\left(\alpha_{j}, j \in N\right)
$$

1. \exists ! equilibrium point $q^{*} \in U$
2. Closed-loop system converges to q^{*} geometrically, i.e.,

$$
\left\|q(t)-q^{*}\right\| \leq \beta^{t}\left\|q(0)-q^{*}\right\| \rightarrow 0
$$

for some $\beta \in(0,1)$

Linearized model

Application: volt/var control

Theorem (Optimality)
The unique equilibrium point $q^{*} \in U$ solves

$$
\min _{q \in U} \sum_{j} c_{j}\left(q_{j}\right)+q^{T} X q+q^{T} \Delta \tilde{v}
$$

where $c_{j}\left(q_{j}\right):=-\int_{0}^{q_{j}} u_{j}^{-1}\left(\hat{q}_{j}\right) d \hat{q}_{j}$ and $\Delta \tilde{v}:=\tilde{v}-v^{\text {ref }}$
Reverse engineering: by choosing a control function u_{j}, we implicitly choose a cost function
$c_{j}\left(q_{j}\right)$ that the closed-loop equilibrium optimizes

Linearized model

Application: volt/var control

Theorem (Optimality)
The unique equilibrium point $q^{*} \in U$ solves

$$
\min _{q \in U} \sum_{j} c_{j}\left(q_{j}\right)+q^{T} X q+q^{T} \Delta \tilde{v}
$$

where $c_{j}\left(q_{j}\right):=-\int_{0}^{q_{j}} u_{j}^{-1}\left(\hat{q}_{j}\right) d \hat{q}_{j}$ and $\Delta \tilde{v}:=\tilde{v}-v^{\text {ref }}$
Forward engineering: Choose a cost function $c_{j}\left(q_{j}\right)$ and derive control functions u_{j} as distributed algorithm to solve the optimization problem

Summary

1. General network

- Complex form, real form

2. Radial network

- With and without shunt admittances

3. Equivalence
4. Backward forward sweep
5. Linearized model

- Analytical solution, bounds, local volt/var control

