Power Systems Analysis

Chapter 6 Branch flow models

Outline

- 1. General network
- 2. Radial network
- 3. Equivalence
- 4. Backward forward sweep
- 5. Linearized model

Outline

- 1. General network
 - Complex form power flow equations
 - Real form power flow equations
- 2. Radial network
- 3. Equivalence
- 4. Backward forward sweep
- 5. Linearized model

- 1. Network $G := (\overline{N}, E)$
 - $\overline{N} := \{0\} \cup N := \{0\} \cup \{1, \dots, N\}$: buses/nodes
 - $E \subseteq \overline{N} \times \overline{N}$: lines/links/edges
- 2. Each line (j, k) is parameterized by $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$
 - y_{jk}^s : series admittance
 - y_{jk}^m , y_{kj}^m : shunt admittances, generally different

- 1. We will introduce several BFM models
 - General: complex form, real form
 - Radial: with/without shunt admits.
- 2. Each model defined by
 - Set of variables
 - Set of power flow equations relating these variables
- 3. These models are equivalent to each other, and to BIM

Branch currents

Sending-end currents

$$I_{jk} = y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m}V_{j}, \qquad I_{kj} = y_{jk}^{s}(V_{k} - V_{j}) + y_{kj}^{m}V_{k},$$

Bus injection model: relate nodal variables s and V

$$s_{j} = \sum_{k:j \sim k} \left(y_{jk}^{s} \right)^{H} \left(|V_{j}|^{2} - V_{j}V_{k}^{H} \right) + \left(y_{jj}^{m} \right)^{H} |V_{j}|^{2}$$

1: Kia

 (s_k, J_k, V_k)

General network Complex form

Branch flow model: includes branch vars as well

- Branch currents (I_{jk}, I_{kj})
- Branch power (S_{jk}, S_{kj})

This model is equivalent to BIM (later)

• Serves as a bridge to BIM

Key feature of original Dist Flow equations (branch flow model) of Baran-Wu1989

- No voltage/current phase angles
- Suitable for radial networks (tree topology)
- We generalize to meshed networks

For each bus j

- $s_j := (p_j, q_j)$ or $s_j := p_j + iq_j$: power injection
- v_i : squared voltage magnitude

For each branch (j, k)

•
$$S_{jk} := (P_{jk}, Q_{jk})$$
 or $S_{jk} := P_{jk} + iQ_{jk}$: sending-end power $j \to k$; also S_{kj} from $k \to j$
• (ℓ_{jk}, ℓ_{kj}) : squared magnitude of sending-end current $j \to k$, and $k \to j$

The variables v_i and (ℓ_{jk}, ℓ_{kj}) contain no angle information

Angle info must be recoverable from a power flow solution $x := (s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6M}$

- This is easy for radial networks
- Trickier for meshed networks

For each line (j, k) let:

$$z_{jk}^{s} := (y_{jk}^{s})^{-1} =: z_{kj}^{s}$$

$$\alpha_{jk} := 1 + z_{jk}^{s} y_{jk}^{m}, \qquad \alpha_{kj} := 1 + z_{kj}^{s} y_{kj}^{m}$$

$$\alpha_{jk} = \alpha_{kj} \text{ if and only if } y_{jk}^{m} = y_{kj}^{m}$$

$$\alpha_{jk} = \alpha_{kj} = 1 \text{ if and only if } y_{jk}^{m} = y_{kj}^{m} = 0$$

For each line (j, k) let:

$$z_{jk}^{s} := (y_{jk}^{s})^{-1} =: z_{kj}^{s}$$
$$\alpha_{jk} := 1 + z_{jk}^{s} y_{jk}^{m}, \qquad \alpha_{kj} := 1 + z_{kj}^{s} y_{kj}^{m}$$

Given $x := (s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6M}$ define nonlinear functions:

$$\beta_{jk}(x) := \angle \left(\alpha_{jk}^{H} v_{j} - \left(z_{jk}^{s} \right)^{H} S_{jk} \right)$$

$$\beta_{kj}(x) := \angle \left(\alpha_{kj}^{H} v_{k} - \left(z_{jk}^{s} \right)^{H} S_{kj} \right)$$

is a power flow solution, then $\left(\beta_{jk}(x), \beta_{kj}(x) \right)$ are angle differences across (j, k)

Steven Low EE/CS/EST 135 Caltech

If x

Real form

$$s_j = \sum_{k:j\sim k} S_{jk}$$

power balance

$$s_{j} = \sum_{k:j\sim k} S_{jk}$$
 power balance
$$\left|S_{jk}\right|^{2} = v_{j} \ell_{jk}, \qquad \left|S_{kj}\right|^{2} = v_{k} \ell_{kj} \qquad \text{branch power magnitude}$$

The complex notation is only shorthand for real equations

$$p_{j} = \sum_{k} P_{jk}, \qquad q_{j} = \sum_{k} Q_{jk}$$

$$v_{j}\ell_{jk} = P_{jk}^{2} + Q_{jk}^{2}, \qquad v_{k}\ell_{kj} = P_{kj}^{2} + Q_{kj}^{2}$$

$$\begin{split} s_{j} &= \sum_{k:j \sim k} S_{jk} & \text{power balance} \\ \left| S_{jk} \right|^{2} &= v_{j} \ell_{jk}, & \left| S_{kj} \right|^{2} &= v_{k} \ell_{kj} & \text{branch power magnitude} \\ \left| \alpha_{jk} \right|^{2} v_{j} - v_{k} &= 2 \operatorname{Re} \left(\alpha_{jk} \left(z_{jk}^{s} \right)^{H} S_{jk} \right) - \left| z_{jk}^{s} \right|^{2} \ell_{jk} & \text{Ohm's law, KCL (magnitude)} \\ \left| \alpha_{kj} \right|^{2} v_{k} - v_{j} &= 2 \operatorname{Re} \left(\alpha_{kj} \left(z_{kj}^{s} \right)^{H} S_{kj} \right) - \left| z_{kj}^{s} \right|^{2} \ell_{kj} \end{split}$$

$$\begin{split} s_{j} &= \sum_{k:j \sim k} S_{jk} & \text{power balance} \\ \left| S_{jk} \right|^{2} &= v_{j} \ell_{jk}, & \left| S_{kj} \right|^{2} &= v_{k} \ell_{kj} & \text{branch power magnitude} \\ \left| \alpha_{jk} \right|^{2} v_{j} - v_{k} &= 2 \operatorname{Re} \left(\alpha_{jk} \left(z_{jk}^{s} \right)^{H} S_{jk} \right) - \left| z_{jk}^{s} \right|^{2} \ell_{jk} & \text{Ohm's law, KCL (magnitude)} \\ \left| \alpha_{kj} \right|^{2} v_{k} - v_{j} &= 2 \operatorname{Re} \left(\alpha_{kj} \left(z_{kj}^{s} \right)^{H} S_{kj} \right) - \left| z_{kj}^{s} \right|^{2} \ell_{kj} \\ \text{there exists } \theta \in \mathbb{R}^{N+1} \text{ s.t. } \beta_{jk}(x) &= \theta_{j} - \theta_{k} & \text{cycle condition} \\ \beta_{kj}(x) &= \theta_{k} - \theta_{j} \end{split}$$

Cycle condition on *x* is highly nonlinear

$$\beta_{jk}(x) := \angle \left(\alpha_{jk}^{H} v_{j} - \left(z_{jk}^{s} \right)^{H} S_{jk} \right)$$
$$\beta_{kj}(x) := \angle \left(\alpha_{kj}^{H} v_{k} - \left(z_{jk}^{s} \right)^{H} S_{kj} \right)$$
$$\beta(x) = \begin{bmatrix} C^{T} \\ -C^{T} \end{bmatrix} \theta \text{ for some } \theta \in \mathbb{R}^{N+1}$$

It ensures angle consistency of a power flow solution *x*

Any $x := (s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6M}$ that satisfies power flow equations with $v \ge 0, \ \ell \ge 0$

is a power flow solution

Branch flow models have been most useful for radial networks All BFMs for radial networks are special cases of this model

- Tree topology
- Tree topology with zero shunt admittances $y_{jk}^m = y_{kj}^m = 0$
- Tree topology with linear approximations

Outline

1. General network

- 2. Radial network
 - With shunt admittances
 - Without shunt admittances
- 3. Equivalence
- 4. Backward forward sweep
- 5. Linearized model

Radial network Cycle condition

Major simplification for radial network: nonlinear cycle condition becomes linear in x

$$\beta_{jk}(x) := \angle \left(\alpha_{jk}^{H} v_{j} - \left(z_{jk}^{s} \right)^{H} S_{jk} \right)$$

$$\beta_{kj}(x) := \angle \left(\alpha_{kj}^{H} v_{k} - \left(z_{jk}^{s} \right)^{H} S_{kj} \right)$$

$$\beta(x) = \begin{bmatrix} C^{T} \\ -C^{T} \end{bmatrix} \theta \text{ for some } \theta \in \mathbb{R}^{N+1}$$

$$\mu = \begin{bmatrix} C^{T} \\ -C^{T} \end{bmatrix} \theta \text{ for some } \theta \in \mathbb{R}^{N+1}$$

general network

Radial network With shunt admittances

$$s_{j} = \sum_{k:j \sim k} S_{jk}$$
 power balance
$$\left|S_{jk}\right|^{2} = v_{j} \ell_{jk}, \qquad \left|S_{kj}\right|^{2} = v_{k} \ell_{kj}$$
 branch power magnitude
$$\left|\alpha_{jk}\right|^{2} v_{j} - v_{k} = 2 \operatorname{Re}\left(\alpha_{jk} \left(z_{jk}^{s}\right)^{H} S_{jk}\right) - \left|z_{jk}^{s}\right|^{2} \ell_{jk}$$
 Ohm's law, KCL (magnitude)
$$\left|\alpha_{kj}\right|^{2} v_{k} - v_{j} = 2 \operatorname{Re}\left(\alpha_{kj} \left(z_{kj}^{s}\right)^{H} S_{kj}\right) - \left|z_{kj}^{s}\right|^{2} \ell_{kj}$$

$$\alpha_{jk}^{H} v_{j} - \left(z_{jk}^{s}\right)^{H} S_{jk} = \left(\alpha_{kj}^{H} v_{k} - \left(z_{kj}^{s}\right)^{H} S_{kj}\right)^{H}$$
 cycle condition
$$2(N+1) + 6M$$
 real equations in $3(N+1) + 6M$ real vars $(M=N)$

Radial network With shunt admittances

Any $x := (s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6M}$ that satisfies power flow equations with $v \ge 0, \ \ell \ge 0$

is a power flow solution

All equations are linear in *x*, except the quadratic equalities

$$\left|S_{jk}\right|^2 = v_j \ell_{jk}, \quad \left|S_{kj}\right|^2 = v_k \ell_{kj}$$

This can be relaxed to second-order cone constraint in OPF (later)

General network Angle recovery

Treat network $G := (\overline{N}, E)$ as directed graph with arbitrary orientation

• (Re-)Define branch variables (S_{jk}, ℓ_{jk}) only in direction of lines (j, k)

• (Re-)Define
$$\beta(x) := \left(\beta_{jk}(x), (j,k) \in E\right)$$
 where

$$\beta_{jk}(x) := \angle \left(\alpha_{jk}^H v_j - \left(z_{jk}^s\right)^H S_{jk}\right)$$

Any power flow solution $x := (s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6M}$ implies

$$\beta(x) = C^T \theta$$
 for some $\theta \in \mathbb{R}^{N+1}$

Angle recovery:

$$V_j = \sqrt{v_j} e^{i\theta_j}, \quad I_{jk} = \sqrt{\ell_{jk}} e^{i\left(\theta_j - \angle S_{jk}\right)}$$

Radial network Without shunt admittances

When shunt admittances $y_{jk}^m = y_{kj}^m = 0$

- $\alpha_{jk} = \alpha_{kj} = 1$
- $\ell_{kj} = \ell_{jk}$ and $S_{kj} + S_{jk} = z_{jk}^s \ell_{jk}$

Can use directed graph with vars (ℓ_{jk}, S_{jk}) defined only in direction of lines (j, k)Substitute (ℓ_{kj}, S_{kj}) in terms of (ℓ_{jk}, S_{jk}) into previous power flow equations yields original DistFlow equations of [Baran-Wu 1989]

Radial network Without shunt admittances

DistFlow equations [Baran-Wu 1989] (down direction):

$$\sum_{k:j \to k} S_{jk} = S_{ij} - z_{ij}\ell_{ij} + s_j \qquad \text{power balance}$$

$$v_j - v_k = 2 \operatorname{Re}\left(z_{jk}^H S_{jk}\right) - |z_{jk}|^2 \ell_{jk} \qquad \text{Ohm's law, KCl}$$

$$v_j \ell_{jk} = |S_{jk}|^2 \qquad \text{branch power restance}$$

nm's law, KCL (magnitude)

anch power magnitude

$$\begin{aligned} &2(N+1)+2M \text{ real equations in } 3(N+1)+3M \text{ real vars } (M=N) \\ &\bullet \text{ Given } \left(v_0,s_j,j\in N\right) \text{, there are } 4N+2 \text{ equations in } 4N+2 \text{ vars } \left(s_0,v_j,j\in N,\ell,S\right) \end{aligned}$$

All lines point away from bus 0

0

Radial network Without shunt admittances

DistFlow equations [Baran-Wu 1989] (down direction):

$$\sum_{k:j \to k} S_{jk} = S_{ij} - z_{ij}\ell_{ij} + s_j \qquad \text{power balance}$$

$$v_j - v_k = 2 \operatorname{Re}\left(z_{jk}^H S_{jk}\right) - |z_{jk}|^2 \ell_{jk} \qquad \text{Ohm's law, KCL}$$

$$v_j \ell_{jk} = |S_{jk}|^2 \qquad \text{branch power r}$$

All equations are linear in *x*, except the quadratic equalities

2

$$v_j \mathcal{C}_{jk} = S_{jk}$$

Steven Low EE/CS/EST 135 Caltech All lines point away from bus 0

0

_ (magnitude)

magnitude

Outline

- 1. General network
- 2. Radial network

3. Equivalence

- 4. Backward forward sweep
- 5. Linearized model

Equivalence Recap

Bus injection model

• General networks: complex form, polar form, Cartesian form

Branch flow model

- General networks: complex form, real form
- Radial networks: with / without shunt admittances

All these models are equivalent

- In what sense?
- They consist of different equations with different variables in different domains

Equivalence Solution set

Bus injection model

$$s_{j} = \sum_{k:j \sim k} \left(y_{jk}^{s} \right)^{H} \left(|V_{j}|^{2} - V_{j}V_{k}^{H} \right) + \left(y_{jj}^{m} \right)^{H} |V_{j}|^{2}$$

Solution set

 $\mathbb{V} := \{ (s, V) \in \mathbb{C}^{2(n+1)} \mid V \text{ satisfies BIM} \}$

Equivalence Solution set

Branch flow models: solution sets

$$\begin{split} \tilde{\mathbb{X}} &:= \{ \tilde{x} : (s, V, I, S) \in \mathbb{C}^{2(N+1)+4M} \mid \tilde{x} \text{ satisfies BFM complex} \} \\ \mathbb{X}_{\text{meshed}} &:= \{ x : (s, v, \ell, S) \in \mathbb{R}^{3(N+1)+6M)} \mid x \text{ satisfies BFM real} \} \\ \mathbb{X}_{\text{tree}} &:= \{ x : (s, v, \ell, S) \in \mathbb{R}^{9N+3} \mid x \text{ satisfies BFM radial} \} \\ \mathbb{T}_0 &:= \{ x : (s, v, \ell, S) \in \mathbb{R}^{6N+3} \mid x \text{ satisfies BFM radial zero } y_{jk}^m \} \end{split}$$

<u>Definition</u>: Two sets A and B are equivalent $(A \equiv B)$ if there is a bijection between them

Equivalence Solution set

Theorem

Suppose G is connected

1.
$$\mathbb{V} \equiv \tilde{\mathbb{X}} \equiv \mathbb{X}_{meshed}$$

- 2. If *G* is a tree, then $\mathbb{X}_{\text{meshed}} \equiv \mathbb{X}_{\text{tree}}$
- 3. If *G* is a tree and $y_{jk}^m = y_{kj}^m = 0$, then $\mathbb{X}_{\text{tree}} \equiv \mathbb{T}_0 \equiv \hat{\mathbb{T}}_0$

Equivalence

Bus injection models and branch flow models are equivalent

• Any result proved in one model holds also in another model

Some results are easier to formulate / prove in one model than the other

- BIM: semidefinite relaxation of OPF (later)
- BFM: some exact relation proofs

Should freely use whichever is more convenient for problem at hand

BFM is particularly suitable for modeling distribution systems

- Tree topology allows efficient computation of power flows (BFS)
- Seems to be much more numerically stable than BIM for large networks
- Models and relaxations extend to unbalanced 3ϕ networks

Outline

- 1. General network
- 2. Radial network

3. Equivalence

- 4. Backward forward sweep
 - For radial networks
- 5. Linearized model

Backward forward sweep

Efficient solution method for power flow equations

• Applicable for radial networks

Partition solution (x, y) into two groups of variables x and y

Each round of spatial iteration consists of a backward sweep and a forward sweep

- Given y, compute each component x_i iteratively from leafs to root (backward)
- Given x, compute each component y_i iteratively from root to leaves (forward)

Iterate until stopping criterion

Different BFS methods differ in how to partition variables into *x* and *y* and the associated power flow equations

Use complex form BFM

<u>Given</u>: V_0 and $s := (s_j, j \in N)$ <u>Compute</u>: $V := (V_j, j \in N)$ and currents $I^s := (I_{jk}^s, (j, k) \in E)$ through series impedance

- All other variables $I_{jk} = I_{jk}^s + y_{jk}^m V_j$, I_{kj} , S_{jk} , S_{kj} can then be computed
- Can also compute V_i and I_{ik} instead (exercise)
- Advantage: $I_{jk}^s = -I_{kj}^s$

D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo. A compensation-based power flow method for weakly meshed distribution and transmission networks. *IEEE Transactions on Power Systems*, 3(2):753–762, May 1988.

yik = ykj

Power flow equation

$$s_{j} = V_{j}I_{ji}^{H} + \sum_{k:j \to k} V_{j}I_{jk}^{H} = V_{j}\left(\left(I_{ji}^{s} + y_{ji}^{m}V_{j}\right)^{H} + \sum_{k:j \to k} \left(I_{jk}^{s} + y_{jk}^{m}V_{j}\right)^{H}\right)$$

Substitute $I_{kj}^{s} = -I_{jk}^{s}$ to write all vars in direction of line $j \to k$: $\left(\frac{s_{j}}{V_{j}}\right)^{H} = -I_{ij}^{s} + y_{jj}^{m}V_{j} + \sum_{k:j \to k} I_{jk}^{s}$

where $y_{jj}^m := \sum_k y_{jk}^m$

Rewrite in spatially recursive structure

$$I_{ij}^{s} = \sum_{k:j \to k} I_{jk}^{s} - \left(\left(\frac{s_{j}}{V_{j}} \right)^{H} - y_{jj}^{m} V_{j} \right)$$

<u>Spatial iteration</u>: propagating from leafs towards root (bus 0) in reverse BFS order

- Given all voltages $V := \left(V_j, j \in \overline{N}\right)$
- Given all currents I_{jk}^s in previous layer
- Compute currents I_{ij}^{s} in current layer

Write in spatially recursive structure

 $V_j = V_i - z_{ij}^s I_{ij}^s,$

<u>Spatial iteration</u>: propagating from root (bus 0) towards leafs in BFS order

- Given all currents $I^s := \left(I^s_{ij}, (i,j) \in E\right)$
- Given all voltages V_i in previous layer
- Compute voltages V_i in current layer

Backward forward sweep Summary

Input: voltage $V_0 = 1$ pu and injections $(s_i, i \in N)$. *Output*: currents $(I_{ik}^s, j \to k \in E)$ and voltages $(V_i, i \in N)$.

1. Initialization.

- $V_0(t) := 1$ pu at bus j = 0 for all iterations t = 1, 3, ...
- $V_j(0) := 1$ pu at all buses $j \in N$ for iteration t = 0.

Backward forward sweep Summary

2. Backward forward sweep: iterate t = 1, 3, 5, ... till stopping criterion

(a) *Backward sweep*. Starting from the leaf nodes and working towards bus 0, compute $I_{ij}^{s}(t) \leftarrow \sum_{k:j \to k} I_{jk}^{s}(t) - \left(\left(\frac{s_j}{V_j(t-1)} \right)^H - y_{jj}^m V_j(t-1) \right), \quad i \to j \in E$

(b) *Forward sweep.* Starting front bus 0 and working towards the leaf nodes, compute $V_j(t+1) = V_i(t+1) - z_{ij}^s I_{ij}^s(t), \quad j \in N$

3. Output:
$$I_{jk}^s := I_{jk}^s(t), V_i := V_i(t+1)$$

Backward Sweep

Backward forward sweep General formulation

Backward sweep: let

- $T_i^\circ := \{ \text{buses in subtree rooted at } i, \text{ excluding } i \}$
- $x_{\mathsf{T}_i^\circ} := \left(x_j, j \in \mathsf{T}_i^\circ \right)$

x satisfies a spatially recursive structure if

$$x_i = f_i\left(x_{\mathsf{T}_i^\circ}; y\right)$$

Backward forward sweep General formulation and some : General alg Forward sweep: let spatial initialization y; = g; (yo; x) • $P_i^\circ := \underbrace{buses_{in}}_{i} path from root to i, inc. 0 but exc. i}_{X_i = \frac{1}{i}} \underbrace{(X_{T_i^\circ}, iY)}_{X_i = \frac{1}{i}}$ Pol • $y_{\mathsf{P}_i^\circ} := \begin{pmatrix} y_j, j \in \mathsf{P}_i^\circ \end{pmatrix}$ $i \stackrel{w}{\bigcirc} y_i = g_i(y_{p_i^\circ}; x)$ y satisfies a spatially recursive structure if $y_i = g_i \left(y_{\mathsf{P}_i^\circ}; x_{\mathsf{X}} \right) = f_i \left(y_{\mathsf{Y}} \right)$

Backward forward sweep General formulation

while stopping criterion not met do

(a) $t \leftarrow t+1$; $y_0(t) \leftarrow y_0$;

(b) Backward sweep: for i starting from the leaf nodes and iterating towards bus 0 do

$$x_i(t) \leftarrow f_i\left(x_{\mathsf{T}_i^\circ}(t); y(t-1)\right), \quad i \in \overline{N}$$

(c) Forward sweep: for *i* starting front bus 0 and iterating towards the leaf nodes do

$$y_i(t+1) \leftarrow g_i\left(y_{\mathsf{P}_i^\circ}(t+1); x(t)\right), \quad i \in \mathbb{N}$$

Backward forward sweep Open question

Convergence analysis

Outline

- 1. General network
- 2. Radial network
- 3. Equivalence
- 4. Backward forward sweep
- 5. Linearized model
 - Analytical solution
 - Bounds on nonlinear solutions
 - Application: decentralized volt/var control

Linear DistFlow equations

For radial networks

Set $y_{jk}^m = y_{kj}^m = 0$, $\ell'_{jk} = 0$

Linear DistFlow equations [Baran-Wu 1989]

$$\sum_{k:j \to k} S_{jk} = \sum_{i:i \to j} S_{ij} + s_j$$
$$v_j - v_k = 2 \operatorname{Re} \left(z_{jk}^H S_{jk} \right)$$

Linear DistFlow equations

In vector form:

bus-by-line incidence matrix

$$C_{jl} = \begin{cases} 1 & \text{if } l = j \to k \text{ for some bus } k \\ -1 & \text{if } l = i \to j \text{ for some bus } i \\ 0 & \text{otherwise} \end{cases}$$

Linear DistFlow equations

$$\begin{split} s &= CS\\ C^T v &= 2\left(D_r P + D_x Q\right)\\ \text{where } D_r &:= \text{diag}(r_l, l \in E), \quad D_x := \text{diag}(x_l, l \in E) \end{split}$$

$$\sum_{k:j \to k} S_{jk} = \sum_{i:i \to j} S_{ij} + s_j$$
$$v_j - v_k = 2 \operatorname{Re} \left(z_{jk}^H S_{jk} \right)$$

Linear DistFlow equations

Linear DistFlow can be solved explicitly

Given:
$$v_0 = 1$$
 pu, injection $\hat{s} := (s_j, j \in N)$
Determine: line power $S := (S_{jk}, j \to k \in E)$, voltage $\hat{v} := (v_j, j \in N)$, injection s_0

Key observation: Reduced incidence matrix has full rank

G connected $\implies (N+1) \times N$ incidence matrix C has rank N

Decompose
$$C =: \begin{bmatrix} -c_0^T - \hat{c} \\ \hat{c} \end{bmatrix}$$

G tree topology $\implies N \times N$ reduced incidence matrix \hat{C} is invertible

Linear DistFlow solution

Linear DistFlow:

$$\hat{s} = \hat{C}S$$

$$v_0 c_0 + \hat{C}^T \hat{v} = 2 \left(D_r P + D_x Q \right)$$
and $s_0 = c_0^T S$

$$s = CS$$

$$C^{T}v = 2(D_{r}P + D_{x}Q)$$

Solution:

$$\begin{split} S &= \hat{C}^{-1}\hat{s} \\ \hat{v} &= v_0 \mathbf{1} + 2\left(R\hat{p} + X\hat{q}\right) \\ \text{where } R &:= \hat{C}^{-T}D_r\hat{C}^{-1}, \quad X &:= \hat{C}^{-T}D_x\hat{C}^{-1} \\ \text{are positive definite matrices} \end{split}$$

Linearized model Bounds on nonlinear solution

Corollary

Fix v_0 and injections $\hat{s} \in \mathbb{R}^{2N}$ at non-reference buses. Let (v, ℓ, S) and $\left(v^{\text{lin}}, \ell^{\text{lin}}, S^{\text{lin}}\right)$ be a solution of nonlinear and linear DistFlow equations respectively (in the down direction).

1. $S_{ij} \ge S_{ij}^{\text{lin}}$ 2. $v_j \le v_j^{\text{lin}}$ Linear DistFlow ignores line losses and underestimates required power to supply loads

Outline

- 1. General network
- 2. Radial network
- 3. Equivalence
- 4. Backward forward sweep

5. Linearized model

- Analytical solution
- Bounds on nonlinear solutions
- Application: decentralized volt/var control

Volv/var control: control reactive power injections q to stabilize voltages \hat{v}

How should *q* adapt as voltages fluctuate?

Local memoryless feedback control:

$$q_j(t+1) = \left[u_j \left(v_j(t) - v_j^{\mathsf{ref}} \right) \right]_{U_j} \qquad \qquad U_j := \{ q_j : \underline{q}_j \le q_j \le \overline{q}_j \}$$

4:(V.)

Adapt reactive power $q_i(t)$ to drive voltage $v_i(t)$ towards target v_i^{ref}

Control $q_i(t+1)$ depends only on:

- Feedback: measured system state v(t)
- Memoryless: latest voltage v(t) at time t, not history v(s), s < t
- Local: local voltage $v_i(t)$ at bus j, not other voltages $v_k(t)$

Local memoryless feedback control:

$$q_j(t+1) = \left[u_j \left(v_j(t) - v_j^{\mathsf{ref}} \right) \right]_{U_j} \qquad \qquad U_j := \{ q_j : \underline{q}_j \le q_j \le \overline{q}_j \}$$

4:(1)

Adapt reactive power $q_i(t)$ to drive voltage $v_i(t)$ towards target v_i^{ref}

How does the closed-loop system behave ?

- under this simple local control
- if network is described by Linear DistFlow

Linear DistFlow model describes how voltages (linearly) depend on control q:

$$v(q) = v_0 \mathbf{1} + 2(Rp + Xq) = 2Xq + \tilde{v}$$

where $\tilde{v} := v_0 \mathbf{1} + 2Rp$

Since

$$\frac{\partial v_j}{\partial q_j} = 2X_{jj} = \sum_{(i,k)\in\mathsf{P}_j} x_{ik} > 0$$

it justifies choosing u_j to be a decreasing function of $v_j(t) - v_j^{ref}$

Assume measured voltage is given by Linear DistFlow, i.e., $v_j(t) = v_j(q(t))$

Closed-loop system is discrete-time dynamical system:

$$q_j(t+1) = \left[u_j \left(v_j(q(t)) - v_j^{\mathsf{ref}} \right) \right]_{U_j}$$

where $v(q) = 2Xq + \tilde{v}$

<u>Definition</u>: q^* is a fixed point or equilibrium point if $q^* =$

$$\left[u\left(v(q^*)-v^{\mathsf{ref}}\right)\right]_{U_j}$$

Assume measured voltage is given by Linear DistFlow, i.e., $v_i(t) = v_i(q(t))$

Closed-loop system is discrete-time dynamical system:

$$q_j(t+1) = \left[u_j \left(v_j(q(t)) - v_j^{\mathsf{ref}} \right) \right]_{U_j}$$

where $v(q) = 2Xq + \tilde{v}$

What are convergence and optimality properties of closed-loop system ?

Closed-loop system is discrete-time dynamical system:

$$q_j(t+1) = \left[u_j \left(v_j(q(t)) - v_j^{\text{ref}} \right) \right]_{U_j}$$

where
$$v(q) = 2Xq + \tilde{v}$$

Assumptions

- u_j are differentiable and $\left| u_j'(v_j) \right| \leq \alpha_j$
- u_i are strictly decreasing

Theorem (Convergence)

If largest singular value $\sigma_{\max}(AX) < 1/2$ then

$$A := \operatorname{diag}\left(\alpha_{j}, j \in N\right)$$

- 1. $\exists !$ equilibrium point $q^* \in U$
- 2. Closed-loop system converges to q^* geometrically, i.e.,

 $\|q(t) - q^*\| \leq \beta^t \|q(0) - q^*\| \rightarrow 0$ for some $\beta \in (0, 1)$

Theorem (Optimality)

The unique equilibrium point $q^* \in U$ solves

$$\min_{q \in U} \sum_{j} c_{j}(q_{j}) + q^{T}Xq + q^{T}\Delta \tilde{v}$$

where $c_{j}(q_{j}) := -\int_{0}^{q_{j}} u_{j}^{-1}(\hat{q}_{j}) d\hat{q}_{j}$ and $\Delta \tilde{v} := \tilde{v} - v^{\text{ref}}$

<u>Reverse engineering</u>: by choosing a control function u_j , we implicitly choose a cost function $c_j(q_j)$ that the closed-loop equilibrium optimizes

Theorem (Optimality)

The unique equilibrium point $q^* \in U$ solves

$$\min_{q \in U} \sum_{j} c_{j}(q_{j}) + q^{T}Xq + q^{T}\Delta\tilde{v}$$

where $c_{j}(q_{j}) := -\int_{0}^{q_{j}} u_{j}^{-1}(\hat{q}_{j}) d\hat{q}_{j}$ and $\Delta\tilde{v} := \tilde{v} - v^{\text{ref}}$

Forward engineering: Choose a cost function $c_j(q_j)$ and derive control functions u_j as distributed algorithm to solve the optimization problem

Summary

- 1. General network
 - Complex form, real form
- 2. Radial network
 - With and without shunt admittances
- 3. Equivalence
- 4. Backward forward sweep
- 5. Linearized model
 - Analytical solution, bounds, local volt/var control