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Preface

Some notes.

1. A key feature of this book is its extensive and systematic treatment of unbalanced three-phase mod-
eling and power flow analysis. A three-phase network consists of three-phase devices connected by
three-phase lines and transformers. Motivated by emerging applications in secondary distribution
circuits, our perspective is that most controllable devices are the single-phase devices that make up
three-phase devices in Y or A configurations. It is therefore important to model carefully the internal
voltages, currents, and powers across these single-phase devices and how they determine the termi-
nal voltages, currents, and powers that are externally observable and that interact over the network.
This is developed in Part II of the book and used to formulate three-phase optimal power problems
in Part IIT (Chapters 13.1 and 13.2). It will become clear that the difference between single-phase
and three-phase systems mainly lies in the device models, not in network equations that relate the
terminal variables.
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Chapter 0

Introduction

0.1 Notation

Let C denote the set of complex numbers, R the set of real numbers, and N the set of integers. We use
i to denote \/—1. For a € C, Rea and Im a denote its real and imaginary parts respectively, and @ or
a denotes its complex conjugate. For any set A C C", convA denotes the convex hull of A. For a € R,
[a]" :=max{a,0}. Fora,b € C,a < b means Re a < Re b and Im a < Im b. We sometimes abuse notation
to use the same symbol a to denote either a complex number Rea +ilma or a size 2 real vector a =(Rea,
Ima) depending on the context. The empty set is denoted 0.

In general scalar or vector variables are in small letters, e.g. u,w,x,y,z. Most power system quantities
however are in capital letters, e.g. Sjt, Pjx,Qjk,1;,V;. Unless otherwise specified, a vector is a column
vector and is written interchangeably as

Va
V. = |V,| or V = (Vi,Vp, V)

Ve
A variable without a subscript usually denotes a vector with appropriate components, e.g. s := (s;,j =
0,...,n), S := (Sj, (j,k) € E). For a vector a = (ay,...,a), a_; denotes (ar,...,a;—1,a;+1,a;) without
the a; entry. For a subset A C {1,...,k}, a_4 := (a;,i ¢ A). For vectors x,y, x < y denotes componentwise
inequality. We freely refer to x as singular if we mean the vector x or as plural if we mean its components
X1,---,X,. For example we may refer to A* as a locational marginal price or locational marginal prices.

Matrices are usually in capital letters. Let M,N be index sets with m := |M|, n:= [N|. Anm xn
matrix with g;; € C as its (i, j)-th entry for i € M, j € N, can be written as A = (a;j,i € M, j € N). Given
k := min{m,n} and scalars ay,...,a, diag(ay,...,a;) is a k X k diagonal matrix with a@; on its diagonal.
Given an m x n matrix A, diag(A) := diag(A1y,...,A). We use A to denote the componentwise complex
conjugate of a matrix A. The transpose of a matrix A is denoted by AT and its Hermitian (or conjugate)
transpose by AH := AT. Sometimes we also use A* to denote A™. If a is a scalar then a" = a* is its
complex conjugate. We use interchangeably (AY) "and A"H. A matrix A is Hermitian if A = AH. A is
positive semidefinite (or psd), denoted by A > 0, if A is Hermitian and xHAx >0 forall x € C"; in particular

1
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if A > 0 then by definition A = AP Ads negative semidefinite (nsd) if —A is psd. For matrices A,B, A = B
means A — B is psd. Let S" be the set of all n x n Hermitian matrices, S'| the set of n x n psd matrices, and
S" the set of n x n nsd matrices.

A graph G = (N, E) consists of a set N of nodes and a set E C N x N of edges. If G is undirected then
(j,k) € E if and only if (k, j) € E. If G is directed then (j,k) € E only if (k, j) € E; in this case we will use
(j,k) and j — k interchangeably to denote an edge pointing from j to k. Therefore, for an undirected graph,
Y.(j.k)cE Xjk includes both x j and x;; for each edge (j,k) € E, whereas, for a directed graph, Y(jk)eE Xjk
includes a single term x ;. for each directed edge j — k. Sometimes, we write }.(; 1)cg (x ik T Xk j) instead
of }.(jx)ck Xjk to emphasize the undirected nature of the graph. By “j ~ k” we mean an edge (j, k) if
G is undirected and either j — k or k — j if G is directed. Sometimes we write j € G or (j,k) € G to
mean j € N or (j,k) € E respectively. A path p := (ji,...,jk) is an ordered set of nodes j; € N so that
(Jks jrs1) € E fork=1,...,K — 1. In that case we refer to a link or a node in the cycle by (ji, jxr1) € p
or jx € p respectively. A cycle is a path where jx = ji. A simple cycle is a cycle that visits every node
at most once. Unless specified otherwise, we refer to j interchangeably as a node or a bus and j ~ k
interchangeably as a link, an edge, or a line.

Given a function f : R” — R™, g—f is the m x n matrix whose (j, k) entry is
X

3f} af; .
9= Yy, —1,.m k=1,...,
{ax ik an(x) J " "

-
and Vf(x) := (%) is its transpose. In particular if m = 1 then % is a row vector and V f(x) is a column
vector.

We use e to denote the constant lim, (1 + 1/n)" and e; € {0,1}" the unit vector of appropriate size
n with a single 1 in the jth position. For the study of three-phase power systems, both balanced and
unbalanced, ¢ := (1,0,0), ¢” := (0,1,0), ¢ := (0,0,1), and e? € {0,1}" is the unit vector with a single
1 in the j¢th position. The vector 1 usually denotes the vector of all 1s of size 3 and I usually denotes the
identity matrix of size 3; they sometimes denote the vector of all 1s and the identity matrix respectively
of other sizes depending on context. We often use o := ¢ 12%/3, The standard balanced vector in positive
sequence is &, := (1, o, ®?) and that in negative sequence is & := (1,@?, &). The following conversion
matrices are key to the understanding of three-phase power systems:

1 -1 0 1 0 -1
r .= |0 1 -1}, .= |-1 1 0
-1 0 1 0 -1 1

Its properties are explained in Theorems 1.2 and 7.2. The similarity transformation to obtain symmetrical
components due to Fortescue is defined by the eigenvectors (1,0, a_) of T".

0.2 Units

The unit of a quantity is specified usually the first time the quantity is introduced. Commonly used units
in this book are collected here for convenience. We often overload notations so that the same symbol
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may refer to different quantities depending on the context, e.g., I may denote a vector of current phasors
I = (I;;i =1,...,n) or the identity matrix of appropriate size, V may denote a vector of voltage phasors
V =(V;,i=1,...,n) or their unit volt.

1.
2.
3.

6.

7.

. conductance g := r/(r* +x?), susceptance b := x/(r*> +x*), admittance y := 7~

voltage v(z),V: volt (V).
current i(t),I: ampere (A).

real power P : watt (W); reactive power Q : volt-ampere reactive (var); complex power S := P +iQ,
apparent power |S|: volt-ampere (VA).

. resistance r, reactance x = i®! or 1/i®c, impedance z := r+ix: ohm (Q).

I'=: g +ib: Siemen

(S) or mho (Q71).
inductance /: henry (H); magnetic flux linkage A (¢) = li(¢) : weber-turn (Wb-turn).

capacitance c: farad (F); electric charge g(z) = cv(t) : coulomb (C)

We will sometimes overload notation, e.g., [ is used sometimes to denote inductance, sometimes in-
ductance per unit length, some times a line index. The meaning should be clear from the context.
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Single-phase networks



Chapter 1

Basic concepts

This chapter introduces basic concepts in modeling the steady-state behavior of an alternating current (AC)
power system where voltages and currents are sinusoidal functions of time. For us, steady state means that
the frequencies of voltages and currents in the entire network are at their nominal value (e.g., 60 Hz in
the US, 50 Hz in China and Europe). In Chapter 1.1 we describe phasor representation of sinusoidal
voltages and currents, and introduce circuit models of devices that make up a single-phase system. In
Chapter 1.2 we explain balanced three-phase systems and how to simplify their analysis using per-phase
models. In Chapter 1.3 we define the concept of complex power for single-phase and three-phase systems,
and illustrate through an example that a three-phase system saves power and conductors compared with a
single-phase system serving the same load.

1.1 Single-phase systems

An AC system consists of generators and loads connected by transmission or distribution lines and trans-
formers. Their behavior can be described using quantities such as voltages, currents, and power which
are sinusoidal functions of time. These quantities obey laws of physics. For our purposes they are the
Kirchhoff’s current law (KCL), Kirchhoff’s voltage law (KVL), and Ohm’s law. These laws allow us to
analyze or simulate system behavior in the time domain. For steady-state behavior it is often easier to
transform these quantities to the phasor domain, apply the corresponding physical laws in the phasor do-
main to analyze the steady state of a power network, and then translate the results back to the time domain,
as illustrated in Figure 1.1.

In this section we define voltage and current phasors, present simple models of generators, loads, and
lines using voltage sources, current sources, and impedances. We also summarize KCL, KVL and Ohm’s
law in the phasor domain. They can be used to analyze a network of these circuit elements.

5
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Figure 1.1: Phasor representation and analysis.

1.1.1 Voltage and current phasors

The quantities of interest, voltage v(¢), current i(¢), and power p(t), are physical and can be empirically
measured. The potential energy gained in moving a unit of charge from point k to point j is called the
voltage, or electric potential difference, between j and k, denoted by v j;. Its SI unit (International Systems
of Units) is volt (V), or equivalently, joule/coulomb. Usually we arbitrarily fix a reference point 0 for
all voltages in the system under study. In that case we refer to the voltage at point j with respect to the
reference point simply as the voltage at j and denote vjo simply by v;. Then the voltage between two
points j and k is vj; := v; — v and represents the energy required to move a unit of charge from point k
to point j. The flow rate of electric charge through a point is called the current through that point. Its SI
unit is ampere (A), or equivalently, coulomb/second. The rate of energy transfer when a unit of charge is
moved through an electric potential difference (voltage) between two points is called electric power. Its
ST unit is watt (W), or equivalently, joule/second. It is equal to the product of voltage and current between
these two points.

A sinusoidal voltage function is
V(t) = Vmax COS((OI + Gv) = Re {Vmaxeiev . eiwt}

where Viax is the amplitude (i.e., maximum magnitude) of the voltage v(z), @ is the steady-state frequency
in radian, and Oy is the phase angle. In steady state, m is assumed fixed systemwide, and hence a voltage
function is fully specified by two parameters (Viax, 8y ). This motivates the definition of voltage phasor

Voo .
V — max elev

NG volt (V)

such that
Wr) = Re(\ﬂw “’f+"V> (1.1)

The period of v(¢) is T := 27/ ®. The magnitude of the voltage phasor

Vmax
VI =
vl o=

is equal to the root-mean-square (RMS) value of the voltage, defined as

l/Tv2(t / cos?(wt + 6y)dr = Yimax
T Jo max 14 \/Q
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where we have used cos? ¢ = (14 cos2¢)/2.
Similarly let the sinusoidal current function be
i(t) = Inaxcos(ot+ 6;) ampere (A)

with the corresponding current phasor

such that
i(r) = Re(V2l1|-ciloron) (1.2)

The RMS value of the current is |1] := Inax/V/2.

1.1.2 Single-phase devices

Basic building blocks of an AC power system are generators that generate power, loads that consume
power, transmission and distribution lines and transformers that connect generators and loads. These
devices can be modeled by circuit elements such as impedances, voltage sources, current sources, and
(later) power sources, as we now explain.

Impedance z. The voltage and current across a resistor 7 in ohm (Q), an ideal inductor / in henry (H), or
an ideal capacitor c in farad (F) satisfy a linear relation, both in the time domain and in the phasor domain.
We now derive Ohm’s law in the phasor domain from its representation in the time domain.

Consider the circuit in Figure 1.2. The voltage v(¢) across the resistor r and the current i(¢) through it

i(7)
o—>

v(t) ELB

- O

Figure 1.2: In phasor domain the voltage V and current I across a linear circuit element z are related by
V = zI where the impedances for resistor r, inductor I, capacitor ¢ are z = r,iwl, (ioc)~! respectively.
(April 1, 2024: Fig change: R,L,C —r,l,c.)

are related by Ohm’s law:
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Using (1.1)(1.2), this is equivalent to:
Re {V . ﬁeiwt} = Re{rl- \ﬁei(‘”}
Hence Ohm’s law in the phasor domain for a resistor is:
V = rl

The current across a resistor is called in phase with the voltage.

An ideal inductor [ is characterized by

di(t)
t) = 1
v(t) %
Substituting (1.1) and
di(t) :
il — O Iax sin(@t + 6;) = @ Iyaxcos(or + 6+ w/2)

we have
Re{V-v2d} = Reliolr-v2e™}
or in the phasor domain:
V = (iol)I

The current across an inductor is said to lag the voltage by 7 /2 radian.

Similarly an ideal capacitor c is characterized by

Substituting (1.2) and

dv(t)
d(1)

= —OVnusin(@r+06y) = ©Vpaxcos(wr+ 6y +m/2)

we have
Re {I- \fZeiw’} = Re {ia)cV . \[26“1”}

or in the phasor domain:

1
Vo= —I
10¢

The current across a capacitor is said to lead the voltage by /2 radian.
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In summary we define the impedances of these elements, a resistor r, an ideal inductor /, and an ideal
capacitor c in the phasor domain as respectively:

Zr =1, 71 = iwl, Ze 1= —

Instead of impedance z, sometimes it is convenient to use its inverse, called the admittance y := 7z~ L. The
voltage V across an impedance z (or admittance y) and the current / through it are related in the phasor
domain by

V=z[ and [ =yV

An important advantage of phasor representation of an AC circuit is that circuit analysis involves only
algebraic operations rather than differential equations in the time domain.

Example 1.1. A voltage v(¢) is applied to a resistor r and an inductor / in series and the current through
these devices is i(f). Derive the dynamic equation that relates (v(z),i(z)) in the time domain and the
corresponding equation that relates their phasors (V, ).

Solution. Let vi(t) = ri(t) denote the voltage drop across the resistor and v,(¢) the voltage drop across
the inductor that satisfies v, (¢) = [4i(t). Then the relation between (v(t),i(t)) is given by KVL: v(t) =
vi(t)+va(t) or

v(t) = ri(t) + l%i(t)

Noting that v(r) = Re { V2V ei“”} and i(t) =Re {\@I e } we multiply both sides of the equation above
by € to get

VAV = 210 4 l(iw\leeiwf)
V = (r+iwl)l

Hence the resistor and inductor in series can be modeled in the phasor domain by an impedance z :=
r+iwl. [

Voltage source (E,z). In the phasor domain, a voltage source is a circuit model with a constant internal
voltage E in series with an impedance z, as shown in Figure (a). Its external behavior is described by the
relation between its terminal voltage and terminal (V,1):

V. = F -2

Hence the open-circuit (terminal) voltage V equals the internal voltage E. We often adopt an ideal voltage
source with z = 0. In this case V = E.



10 Draft: EE 135 Notes April 30, 2024

L I
E | Vv J 1] v
L - T .

(a) Voltage source (b) Current source

Figure 1.3: A voltage source (E,z) and a current source (J,y). An ideal voltage source has z =0 and an
ideal current source has y = 0. (Fig change: Z,Y — z,y.)

Current source (J,y). In the phasor domain, a current source is a circuit model with a constant internal
current J in parallel with an admittance y, as shown in Figure (b). Its external behavior is described by the
relation between its terminal voltage and current (V,1):

I = J—-)yV

Hence the closed-circuit (terminal) current / equals the internal current J. We often adopt an ideal current
source with y = 0. In this case I = J.

Remark 1.1. 1. A nonideal voltage source (E,z) and a current source (J,y) are equivalent, i.e., have
the same terminal voltage and current relationship if their parameters satisfy

E

J = — (closed-circuit equivalent)
Z
z

(open-circuit equivalent)

2. Ideal voltage or current sources are reasonable models as their series impedances or shunt admit-
tances can be combined with the series impedance and shunt admittances of a transmission or dis-
tribution line to which they are connected, as we will see in Chapter 2. We will therefore often use
ideal voltage and current sources in this book with series series impedances and shunt admittances.

]

Single-phase devices. Basic devices in a power system are generators, loads, transmission and distribu-
tion lines, and transformers. A generator can be modeled by a voltage source or current source. A load can
be modeled by an impedance (or admittance), a voltage source, or a current source. A line can be modeled
by a series impedance, possibly with a shunt admittance at each end of the line; the details are described
in Chapter 2. A transformer can be modeled by a series impedance and a shunt admittance followed by
voltage and current gains; the details are described in Chapter 3. We will introduce in Chapter 1.3 the
concept of complex power. This leads to a device we will call a power source that generates or draws a
constant power. These are summarized in Table 1.1. This book develops techniques for analyzing power
system models constructed from these circuit elements.

A common load model is called a ZIP load where Z models a load by a constant impedance z or its
reciprocal y := 1/z, I models a load by a constant current source (J/,y), or equivalently, by a constant
voltage source (E,z), and P models a load by a constant complex power injection/withdrawal, e.g., a PQ
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Device Circuit model

Generator Voltage source, current source, power source

Load Impedance, voltage source, current source, power source
Line Impedance (Chapter 2)

Transformer | Impedance, voltage/current gain (Chapter 3)

Table 1.1: Circuit elements commonly used for modeling generators, loads, lines, and transformers.

bus in Chapter 4.3.4. All three types of loads can be represented by a relationship between the power S
consumed by the load and the voltage V across the load:

S = S (a2]V|2 + ai|V| + a())

where

* So is the nominal power consumption of the load;

* ay|V|? represents a constant impedance load whose power is proportional to voltage magnitude |V |
quadratically.

* a1|V| represents a constant current load whose power is proportional to |V|.

* qg represents a constant power load.

For instance ag = 1/3, a; := |Vo|~!/3, and a := V|2 /3 where V; is the nominal voltage of the load. In
this case the load power is a combination of ZIP and S = S¢p when V = V. The nominal power Sy may
depend also on frequency. During transient, this dependence can be made explicit by the time-domain
model

s(t) = s (a2|v(t)|2 + ai|v(t)| + ao) (1+a3A0(1))

where s(t) := v()i(t) is the instantaneous power in the time-domain (see Chapter 1.3 for relation between
the instantaneous power s(7) in time domain and the complex power S in the phasor domain), and Aw(t)
is the deviation from the nominal frequency during transient.

1.1.3 KVL, KCL, Ohm’s Law, Tellegen’s theorem

Consider a circuit consisting of an interconnection of resistors, inductors, capacitors, and voltage and
current sources. An ideal voltage source between two points enforces a given voltage between these two
points. An ideal current source between two points enforces a given current between them. We now
describe KVL, KCL, Ohm’s law for a general circuit and derive a result called Tellegen’s theorem.

We represent a circuit by a connected directed graph G:= (N,E) with an arbitrary orientation where
N is a set of nodes and £ C N x N is a set of links. We abuse notation and use N to denote both the set
of nodes and the number of nodes in N; the meaning should be clear from the context. We allow multiple
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links between two nodes j and k. A link / that points from node j to node & is represented by / = (j,k) or
[ = j — k. Multiple links /1, ..., I between nodes j and k may have different orientations, e.g., [ = j — k
and [, = k — j. There are two variables associated with each link / = (j,k) between nodes j and k. The
voltage across link / is denoted by U in the direction of / and the branch current over link / from j to k is
denoted by J;.

A link [ represents either an impedance, a voltage source, or a current source. If link / represents an
impedance then its value z; is given and the voltage U; and branch current J; across link / satisfies U; = z;J;
(Ohm’s law). If link / represents a voltage source then U; = u; is given, and if it represents a current source
then J; = j; is given. These notations are illustrated in Figure 1.4a.

F
a
1
<
()
ﬂi"f
.’.\
S
~
)
Al
s
L
o
1
» W N =
ya
4o
L
|
1
| _

4 .
\___——Y—’“)L_’W
‘»L g & 4
(a) Circuit (b) Incidence matrix

Figure 1.4: A circuit represented as a directed graph where each link / is either an impedance z;, a voltage

source Uy, or a current source J;. The voltage source U, = us and current source J;, = — j are given. Its
incidence matrix C is partitioned into C; corresponding to the impedances, C2 corresponding to the voltage
source, and C3 corresponding to the current source. (Fig change: 7,7, — 21,,21,,..-.)

KCL, KVL. Kirchhoff’s current law (KCL) states that the incident currents at any node j sum to zero:

- Y Wi+ Y Jx o= (1.3a)

i:i—jeE k:j—keE

For the example in Figure 1.4 this means —J;, +J;, +J;; +J;, = 0 at node 2. Kirchhoff’s voltage law
(KVL) states that voltage drops around any cycle ¢ sum to zero. Consider a cycle ¢ in the graph with an
arbitrary orientation, say, clockwise. A link [ in the cycle that is in the same direction as c is denoted by
[ € ¢ and a link [ that is in the opposite direction to c¢ is denoted by —/ € ¢. Then KVL states that the
voltage drops around any cycle ¢ sum to zero:

Yu-Yu =0 (1.3b)

lec —lec

For the cycle indicated in Figure 1.4(a) we have U;, +U;, —U;;, = 0.

We can represent (1.3) compactly in vector notation. Let U := (Ul,l €k ) and J := (Jl,l €k ) denote
the vectors of voltages and currents respectively across these lines. Let C € {—1,0,1}N*IEl be the node-
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by-link incidence matrix defined by:

1 if | = j — k for some bus k
Cy = —1  ifl=i— jforsomebusi |, jeN,IcE
0 otherwise

See Figure 1.4 (properties of general incidence matrices are summarized in Appendix 25.2). Then Kirch-
hoff’s current law (1.3a) states that

KCL: CJ] = 0 (1.4a)

Kirchhoff’s voltage law is equivalent to the condition that there exist nodal voltages V & ol (with respect
to the common reference point node 0) such that

KVL: U = C'v (1.4b)

i.e., given line voltages U, there must exist nodal voltages such that U; = V; —V} where [ = j — k, from
which (1.3b) follows. This seems intuitive and can be proved mathematically using concepts in algebraic
graph theory (Exercise 1.1). Without loss of generality we use node N as the common reference point for
all voltages, i.e., we have by definition

Vg =0 (1.4¢)

Circuit analysis. Consider a circuit represented by an incidence matrix C. The |N| x |E| incidence
matrix C is of rank |N| — 1 since G is connected, with span(1) as its null space (see Chapter 25.2 for
more details). Therefore (1.4) consists of |[N| 4 |E| linearly independent complex equations in |N|+2|E]|
complex variables (V,U,J). To obtain another ]E | linearly independent equations we note that across every
link [ is exactly one of the following devices:

1. impedance with a given z;: Its behavior is described by Ohm’s law

U = zJi (1.5a)
2. ideal voltage source with a given u;: Its behavior is described by

U = u (1.5b)
3. ideal current source with a given j;: Its behavior is described by

Jl = jl (1.50)

In other words (1.4)(1.5) specify |N|+2|E| linearly independent equations in |N| +2|E| variables (V, U, J).
A circuit analysis problem is to solve (1.4)(1.5) for these variables. A sufficient condition is given in
Theorem 1.1 for the existence and uniqueness of solution. A necessary condition for the existence of a
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solution is that the given voltage and current vectors (v, j) are consistent, e.g., if only current sources are
incident on a node k, then these given currents must satisfy KCL at node k, or if a set of voltage sources
form a cycle c then these given voltages must satisfy KVL on c.

The system (1.4)(1.5) of equations can be simplified, as follows. Partition the set E of links into three
disjoint sets £ =: E1 U Ey U E3 where E| is the set of impedances, E, voltage sources, and E3 current
sources. Order the links such that the incidence matrix decomposes into submatrices C1,C,,C5 corre-
sponding to impedances, voltage sources, and current sources respectively (see Figure 1.4b):

Uj Ji
U:=|ul, J = |)
Us J

where v and j are the given vectors of voltage and current sources respectively. Let Z := diag(z;,E;) be
the diagonal matrix whose entries are the given impedances z;. Then KCL and KVL are

Cii + G, = —Gij
u = Clv, u = G, Uus = Gjv

for some nodal voltages V. Use Ohm’s law U = ZJ| to eliminate U to obtain

¢t -z 0 0 ||
GG 0 0 0 ||
¢l 0 0 -Iy] |Us

(1.6)

0 ¢ & 0 v —G3j
0
u
0

where Iy, is the identity matrix of compatible size with Us. The desired quantities (V,Us,J;,J2) are
solutions of (1.6) if they exist. Given Ji, U; is given by U; = ZJ;.

Recall that we take without loss of generality node N as the common reference point for nodal voltages
and assign Vy := 0. We can consider the (|[N| — 1) x |E| reduced incidence matrix C obtained from C by
deleting the last row corresponding to the reference node N. The advantage of using C is that it has a full
row rank of W | —1. LetV_g = (Vj, j#N ) be the vector of all non-reference nodal voltages. Similarly
partition C into C =: [C; C, C3]. Then (1.6) is equivalent to the following equation:

0 ¢ &G 0 V_x -G53
cl -z 0 0 | 0 (17
c; 0 0 0 Lol u '
C; 0 0 —Iy| |Us 0

M

The key feature of this model, compared with (1.6), is that it does not contain the reference node N.
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Example 1.2. Consider the circuit in Figure 1.4 represented by the directed graph G = (N ,E) with

N := {1,2,3,4}
E:={l:=152 L:=2-3,1:=2—=4,14:=2—=4I5:=1 4, lg:=3 >4}

The incidence matrix C can be partitioned into submatrices

1 O 0 O 1 0
A -1 1 1 1 A 0 A 0
0O 0 -1 -1 —1 —1
The reduced incidence submatrices are then
1 0O 0O 1 0
¢, =1|(-1 1 1 1], C, .= (0], G = |0
0O -1 0 0 0 1
The equation (1.7) becomes:
[0 0 O 1 0 0 0O (110 1T v ] [0 |
O 0 0| -1 1 1 1 (0] O Vs 0
0O 0 O 0 -1 0 0 (0] O V3 J6
I =1 0 |-z O 0 0O (0] O Iy, 0
0O 1 -1, 0 -z O 0 [0] O Ji, = 0
0 1 0 0 0 -z, O (0] O J 0
0 1 0 0 0 0 —z,/0]0 Ji, 0
1 0 O 0 0 0 0O (0] O Jis us
| 0 0 1 0 0 0 0 |0]—-1] U . | 0 |

We now discuss the existence and uniqueness of solution to (1.7).

Theorem 1.1. The matrix M in (1.7) is invertible if both of the following square matrices of sizes N — 1
and |E,| respectively are invertible:

~1
az'cl, o (clz”cﬂ 1)
where E, is the set of voltage sources. O

If z; are real and positive then C 1Z_]C1r is invertible since Z := diag(z;) is positive definite and C and
hence its submatrix C; are both of full row rank. When Z is complex, C1Z _ICI'_ may not be invertible even
if z; are all nonzero and C is of full row rank (see discussions in Chapter 4.2.5). The matrix C; is of full
row rank if and only if no voltage sources form a cycle in the circuit.
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The proof of Theorem 1.1 relies on the following fact. Let M € C™*" and partition it into blocks:

A B
el
such that C € C**k k < n, is invertible and the other submatrices are of matching dimensions. The
(n—k) x (n—k) matrix M/C := A — BC~'D is called the Schur complement of block C of matrix M. If A
is invertible then the k x k matrix M /A := C — DA~ !B is called the Schur complement of block A of matrix
M. Then M is nonsingular if and only if C and M /C are nonsingular. Also, M is nonsingular if and only if

A and M /A are nonsingular; see Theorem 25.4 in Appendix 25.1.3.

Proof of Theorem 1.1. We can interchange the second and third rows and interchange the second and third
column write (1.7) equivalently in terms of the matrix

0 G|lc o
- l¢g o]0 0
M= ¢l 0|-z o

Ci 0|0 —Iy

The matrix M is nonsingular if and only if M is. Since Z and [y, are both nonsingular, M is nonsingular if
and only if the Schur complement of diag (—Z, —Ij,):

0 G Cc; 0l[z7' ol[c] o az-'cl o
S = o1 + T = T
cl] 0 0 0|0 Iyl|lcl o C, 0

is nonsingular. The Schur complement S is a square matrix of size (N — 1) 4 |Ey| where E; is the set of
voltage sources. By assumption the (N — 1) x (N — 1) matrix C;Z~'C] is nonsingular. Therefore M is
nonsingular if and only if the Schur complement

—1
s/ (clz—lcf) = ] (clz—ch G

of C Z*1C1T is nonsingular. O

Tellegen’s theorem An important result in circuit theory is Tellegen’s theorem that expresses a relation
between voltage drops across links and currents on these links. It is a simple consequence of Kirchhoff’s
laws and algebraic graph theory (see Chapter 25.2 for more details). Since the rank of the |N| x |E]|
incidence matrix C is |[N| — 1 assuming G is connected, the rank of the range space range(CT) is |[N| — 1
and the rank of the null space null(C) is |E| — [N|+ 1. Recall that the subspaces null(C) and range(CT)
are orthogonal complements of each other and they span (C'E|, ie., CEl = null(é) @ range (C’T). The

KCL and KVL (1.3a)(1.3b) say that the branch currents satisfy J € null(é ) and the branch voltages satisfy
U € range (CT) respectively. Therefore

Tellegen’s theorem: JHu =0

It is remarkable that this relation holds for any branch current vector J and branch voltage vector U, even
if they are from different networks as long as these networks have the same incidence matrix C.
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1.1.4 One-line diagram and equivalent circuit

A power system is often not specified as a circuit of the form we study in Chapter 1.1.3. Instead it is
usually specified by what is called a one-line diagram. A one-line diagram is equivalent to a circuit that
includes the common reference point for nodal voltages as an addition node. Each line in the one-line
diagram may represent a transmission line, a distribution line or a transformer, single or multi-phased. As
we will see below if a single-phase line has a equivalent II circuit then the line translates into three links
in the equivalent circuit. In this subsection we formally define one-line diagram and derive its equivalent
circuit. A one-line diagram can be analyzed by applying the method of Chapter 1.1.3 to its equivalent
circuit.

One-line diagram. A one-line diagram specifies a network topology and admittance parameters associ-
ated with the lines; see an example in Figure 1.5 for a three-bus network. Formally we define a one-line

diagram as a pair (G,Y) where G := (N,E) is a graph and Y := <yj.k,y’j’.}€,yfj, l=(j,k) e E) is a set of
line parameters for every line / € E (we assume here a single-phase system and y“;.k =y j). Each node

j € N represents a bus in the power system. We will therefore refer to j as a bus or a node interchangeably.
Each link / € E represents a transmission or distribution line or a transformer. We will therefore refer to /
as a line, a link or a branch interchangeably. The line parameter y‘]'-k € C s called the series admittance as-

sociated with line (j,k) and <y;f}<,yz1j) € C? is called its shunt admittances. We will see below how these

para eters determine the equivalent circuit of the line. There can be multiple lines between two buses,
though for notational simplicity we often assume there is a single line between each pair of buses in which
case a line / between buses j and k can be identified by (j, k).

I

Yiz (Gnoge, §0),

K} "
(313 ’ ﬂ:; ’ \‘jll) )
Iz"'lk 1‘”‘ s ¢ e om
V ) (g,,,j,,,g,s))
2 3
(a) Graph G = (N,E) (b) Line parameters Y

Figure 1.5: One-line diagram for a three-bus network (G,Y). It is not a circuit but has an equivalent IT
circuit model.

Equivalent circuit. Associated with each node j are a nodal voltage V; € C with respect to an arbitrary
but common reference point and a nodal current injection /; € C. To derive the relation between the vectors
(V,I) of nodal voltages and currents specified by the one-line diagram, we first derive its equivalent circuit
and then apply the method of Chapter 1.1.3 to the circuit.
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We illustrate this with a simple 2-bus network. The method and the conclusion extend directly to
general networks.

Example 1.3 (Equivalent IT circuit of a single line). Figure 1.6(a) specifies a one-line diagram (G,Y) for
a network consisting of two nodes 1 and 2 connected by a line / = (1,2). The nodal voltages and currents
are (Vi,1;) and (Va, ) respectively. The line parameter (y},,y}5,y4;) defines the equivalent circuit in

V f
; 4} d j
= V, Iq Hr‘: H" jz@ = Vz
Vi Vo -
R, .

(a) One-line diagram (G,Y) (b) Equivalent IT circuit

Figure 1.6: One-line diagram (G,Y) with two nodes 1,2 connected by a line / = (1,2) and its equivalent
IT circuit. The nodal current injections (I},1;) and the nodal voltages (V,V;) in the one-line diagram
become current sources and branch voltages respectively between nodes 1,2 and the reference node 3 in
the IT circuit.

Figure 1.6(b) called the IT circuit of line [ = (1,2). (We will explain the origin of the equivalent circuit
in Chapter 2.) The application of KVL, KCL, and Ohm’s law on the II circuit leads to a relation between
(I,I) and (V1,V,), as we now explain.

Let the directed graph G := (N, E) represent the IT circuit where
N = {1,2,3}, E:={1:=1-3L:=2—-3L:=1-=31;:=2—3,l5:=1—-2}

as shown in Figure 1.6(b). Note that the graph G of the one-line diagram has 2 nodes while the graph G
of its equivalent circuit has 3 nodes with node 3 being the voltage reference point. The key feature is that
the nodal current injections (/1,1,) and the nodal voltages (Vi,V5) in the one-line diagram become current
sources and branch voltages respectively, between nodes 1, 2 and the reference node 3 in the I circuit (see
Figure 1.6b).

For each lipk l € E let U; and {l denote the voltage and currenE across line / in the direction of /. Let
U:= (Ul €FE)andJ:= (J;,] € E). The devices on the links / € E are:
[y : current source I} with J;, = —I, [ : current source I3 with J;, = —I
Iy : admittance yT, with J;, = y{5Uj,, I4 : admittance y5 with J;, = y5,U,,
Is : admittance yj, with J;, = y},Uj,

The node-by-link incidence matrix C of the IT circuit is

1 0 1 0 1
=10 1 0 1 -1
1 -1 -1 -1 0
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The KCL, KVL and Ohm’s law in terms of C,U,J for the I circuit in Figure 1.6(b) are:

KCL: ¢J =0 (1.8a)
KVL: 3V:=(V;,Vs,\3) st. U =CV (1.8b)
Ohm’s law : Jj, = Y{hUy,, Ji, =¥3Uy,, Uy, = yi,Ul (1.8¢)

We will set the nodal voltage V3 implied by KVL to V3 := 0 since node 3 in N is chosen to be the voltage
reference point. Using
Ji

- _117 Jl = _127 V3 =0

1 2

to eliminate branch variables (U,J) from the set (1.8) of equations leads to a relation between the nodal
currents I := (I},I) and voltages V := (V},V,):

L = yi(Vi=V2) +yiaY, L = yiu(V2=WV1)+y51V2
In vector form this is / =YV with
Y = [y‘iz Y b }
V2 Y2 ta

The matrix Y is called the admittance matrix of the network, a single-line in this example. The admittance

1 A . . : .
1 of C corresponding to line /5 with the series
admittance y{,. Note that Cyji,e includes every node in the equivalent circuit except the reference node 3,
i.e., C describes the connectivity between exactly the set of nodes in the original one-line diagram. If we

n
letY*:=[y},] and Y := B}HZ} then
21

matrix Y can be expressed using the submatrix Cijipe 1=

Y := CliineY*Cl}ipe + diag(Y™)

O

For a general network specified by a one-line diagram (G = (N,E),Y) let V := (V;,j € N) and I :=
(Ij,j € N) denote the vectors of nodal voltages and current injections respectively. We interpret the line
parameter (yj.k,y?}(, yﬁ) of each line (j,k) as defining a IT circuit model for the line, as explained in

Example 1.3. This induces an equivalent circuit for the entire network that can be described by a directed
graph G = (N, E) constructed from G = (N, E), as follows. The set N of nodes in the equivalent circuit is

N := NU{|N|+1}
where the additional node N := |N| + 1 is the reference point for all voltages, i.e., Vi := 0. For each

node j € N in the one-line diagram, there is a link / = j — N in the equivalent circuit. Each such link
corresponds to a current source with branch current J; = —I;. Denote this set of links by E| C E.
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For each line A = (j,k) € E parametrized by (y;k,y;f}c,y;?j) in the one-line diagram, there are 3 links

(l Y. 13) in £ in the equivalent circuit, corresponding to

Ly =1J— N : shunt admittance y;f}C with J,, = Yﬂ Uy,
L, =k— N : shunt admittance yij with Jp, =y U,
l), = Jj — k : series admittance yj'-k with Jy, = yj-k Uy,

Let £, denote the set of links corresponding to shunt admittances and £3 denote the set of links corre-
sponding to series admittances. Like links in £}, links in £ are of the form / = j — N and connect nodes
j €N to the reference node N. The remaining links in the equivalent circuit are exactly those in E of
the form [ = j — k connecting two non-reference nodes j,k € N in the one-line diagram. If bus j € N
is connected to k; other buses k € N in the one-line diagram, then there will be kj links [; = j — N in
the equivalent circuits, for k = 1,...,k;, all between nodes j and N, representing shunt admittances y?}< on

these lines. The set £ is the disjoint union of these three types of links:

A

E = EUE]UEZ

Their sizes are |E;| = [N
for an example.

E>| =2|E|. See the two-bus network in Figure 1.6 and its equivalent IT circuit

>

Let Cyjine be the incidence matrix for the subgraph of the circuit consisting of non-reference nodes N
and links in E connecting them, i.e., Cyjipe describes the connectivity between exactly the nodes in the
one-line diagram:

1 ifl=j—kinE
[Clline]jl = —1 ifl=i— jinE | jEN,lEE
0 otherwise
Let Y* := diag (yj.k, (j,k) €E ) denote the diagonal matrix of series admittances on the lines. Let Y™ :=

diag (y’J”]-, JjE N) denote the diagonal matrix of total shunt admittances y7; := Yi.(j x)er y;f}( incident on
each bus j. Then the linear relation between nodal current injections and voltages found in Example 1.3:

I =YV (1.9a)

holds for the general network with the admittance matrix ¥ given by (Exercise 1.4)
Y = CliineV*Cllie + Y™ (1.9b)
The relation (1.9) serves as a formal identification of a one-line diagram (G,Y) with an equivalent II
circuit. Moreover given (G,Y) we can directly write down the admittance matrix ¥ without going through

the circuit analysis conducted above. We therefore often refer to the one-line diagram itself as a circuit
model. This relation including the invertibility of ¥ will be studied in detail in Chapter 4.
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1.2 Three-phase systems

To motivate three-phase systems, consider the single-phase system in Figure 1.7(a) composed of three
identical circuits each consisting of a generator modeled as a voltage source in series with an impedance
Zg, a forward conductor and a return conductor each modeled as an impedance z;, and a load modeled as
an impedance z;. The same loads can also be supplied by a three-phase system shown in Figure 1.7(b).
As we will illustrate in Chapter 1.3.3, such a three-phase system needs half as much the conductor and

@
[z}

2]
L]
]

& W
M
z
o 2
[

2
243

(a) Single-phase system (b) Balanced three-phase system

Figure 1.7: A single-phase system and a balanced three-phase system that transfer power from generators
through transmission lines to loads. (Fig change: Z — z.)

incurs half as much the thermal loss as the single-phase system. In this section we explain the operation
of three-phase systems.

Three-phase sources and loads can be arranged in Y (Wye) or A (Delta) configurations. This is ex-
plained in Chapter 1.2.1. A three-phase system is balanced if all the sources are balanced, loads are iden-
tical, and transmission lines are identical and have symmetric geometry. A balanced three-phase system
has several simplifying properties. In Chapter 1.2.2 we prove a theorem that summarizes the mathemat-
ical structure of balanced three-phase systems that underlies these properties. We apply this theorem to
balanced system in Y configuration (Chapter 1.2.3) and A configuration (Chapter 1.2.4). This leads to
per-phase analysis of a balanced system described in Chapter 1.2.5. Finally we present in Chapter 1.2.6
example configurations common in a power distribution system.

Even though power systems are generally multiphased, single-phase models are widely used as per-
phase models of balanced three-phase systems, especially for transmission system applications. Unbal-
anced three-phase systems are studied in Part II of this book.
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1.2.1 Y and A configurations

Three single-phase devices can be arranged in either an Y or a A configuration as shown in Figure 1.8. They

a a
a I a I

> oV oy*
V('a R I b
.
+
Je Ve
by s by
c ]; oVe c 1= oy
1"': 1” n’
n > oy
(a) Y configuration (b) A configuration

Figure 1.8: Three-phase systems, not necessarily balanced, in Y and A configurations.

can be three voltage sources, three current sources, or three impedances and they may not be identical,
e.g., the three impedances may have different values.

Y configuration. For the Y configuration, the internal voltage (vector) is V¥ := (V“”,Vb”, V). These
voltages are called phase-to-neutral or phase voltages. The internal current (vector) 1Y := (I"”,Ib”,lc”)
is defined to flow from each terminal to the neutral as shown in Figure 1.8(a). The external behavior of
a three-phase device is described by what is measurable on the terminal of the device. The ferminal (or
nodal or bus) voltage V := (V¢,V? V¢) are voltages with respect to an arbitrary but common reference
point, and the terminal (or line) current I := (Ia,lb 7IC) is defined to be the current coming out of the device
as shown in the figure. If the common reference point is taken to be the neutral of this device then V = VY,
i.e., the terminal voltage is the same as the phase voltage for ¥ configuration. Otherwise V = V¥ — V"1
where 1 is three-dimensional vector of all 1s. As we will see in Chapters 1.2.3 and 1.2.4, for a balanced
systems, the neutrals of all Y-configured devices are at the same voltage and therefore can serve as the
common reference point. This is not necessarily the case for an unbalanced system, which we will study
in Part II of this book.

Hence, for Y configuration, the terminal voltage and current (V,I) are determined by the internal
voltage and current (V¥,I") according to (when the common reference point for V is the neutral so that
Vn.=0):

v = VY, [ = -IY (1.10)
‘When the common reference is not the neutral of this device, we have V = (VY — V”l).

Instead of the terminal voltage V' it is also common to describe the behavior of the three-phase device
in terms of its line-to-line or line voltage V"¢ := (V“b ,vbe, VC“). To relate Vi"® to V or to VY, define the
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matrices I and its transpose I'":
r .= |0 1 -1}, r':=1_-11 0 (1.11)

We call T" and I'T conversion matrices. They can be interpreted as the bus-by-line incidence matrices of
the directed graphs shown in Figure 1.9. Then

@{,_}\_ /\

(@ O

Figure 1.9: Directed graphs of which I"and I'" are incidence matrices.

yab 1 -1 07 [ve 1 —1 07 [ven
vbel = 0o 1 —1] |vt| = 1 —1] |vbn
yea -1 0 1] ]|ve -1 0 1] |ver
T T
or in vector form:
yline — v = rv¥ (1.12)

This holds for both ¥ and A configurations and whether or not the common reference point for V' is the
neutral of a Y configured device (since I'1 = 0).

A configuration. For the A configuration in Figure 1.8(b), the internal voltage (vector) is the line-to-line
voltage VA := (V4 ybe yea) = yline and the internal current I := (1?7, I*¢ I°%) is the line-to-line current.
As for the Y configuration, the terminal voltage V := (V¢,V? V¢) are voltages with respect to an arbitrary
but common reference point. The terminal current is [ := (I“,Ib ,IC) as shown in Figure 1.8(b). The
terminal voltage and current (V, ) is determined by the internal voltage and current (VA,I A) according to

1 -1 07 [ve yab ¢ 1 0 —17 [r#

0 1 —1||vt| = |vbel, Pl = —|-1 1 0] |1

-1 0 11| ]|ve yea I 0 —1 1 ||
T T

or in vector form (for arbitrary common reference point for V):

vV = VA, [ = -I'[A (1.13)
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Equivalent Y configuration. For any A configuration with given internal voltage V2 := (V“b ,vbe, yea)
and current I := (1 ]’ I°*), an equivalent Y configuration is one that has the same external behavior.
This means that, if V¥ := (V¥ V2" V") and IV := (I°",I",I°") are the internal voltage and current of the
Y-equivalent then they are related to (VA,IA) according to (from (1.12) (1.13)):

vy = vA, r=rn (1.14)

Summary. The external behavior (1.10) and (1.13) for ¥ and A configurations respectively as well as
their equivalence (1.14) hold for any three-phase system whether or not it is balanced. The relation (1.12)
between line-to-line voltage V'i"® and terminal voltage V holds for ¥ and A configurations whether or not
the system is balanced.

The behavior of a three-phase system is determined by the mathematical properties of the conversion
matrices I and I'T. When a system is balanced the conversion becomes particularly simple because the
transformation of balanced vectors under I and I'T preserves their balanced nature (Corollary 1.3). We
now explain these mathematical properties and then apply them to the analysis of balanced systems in
Chapters 1.2.3 and 1.2.4.

1.2.2 Balanced vectors and conversion matrices I',I""

Definition 1.1 (Balanced vector). A vector x := (x1,x2,x3) with x; = |x;|el% € C, j=1,2,3, is called
balanced if x; have the same magnitude and they are separated by 120°, i.e.,

il = Il = |x
and either
6, — 06, = —Z?ﬂ and 63— 0, = 2?717 (positive sequence) (1.15a)
or
6,—6, = 2?7: and 6;—0; = _Z?JI (negative sequence) (1.15b)

In this chapter we focus on single-phase equivalent circuits of balanced systems. In Part II of this
book we study unbalanced systems and generalize the definition of balance to allow a nonzero bias (see
Definition 7.1), i.e., we will call X a (generalized) balanced vector if it is of the form £ = x+ y1 and x is
balanced according to Definition 1.1, for some possibly nonzero y € C. The bias Y may models a common
reference voltage or the internal loop flow in a A configuration. We assume y = 0 in this chapter which
amounts to the assumption that loop flows are zero and that all neutrals are grounded directly and voltages
are defined with respect to the ground.

A balanced vector x is said to be in a positive sequence if x satisfies (1.15a) and in a negative sequence
set if x satisfies (1.15b). Let

6712727/3



Draft: EE 135 Notes April 30, 2024 25

Im
\

NE) L Re
/

30°

Figure 1.10: Phase shift o := ¢~12%/3 in Theorem 1.2.

Clearly o> = e2m/3 o

the vectors

= 1; see Figure 1.10. (Also see Exercise 1.5 for more properties of ®.) Define

1 1
L = a |, a. = |a? (1.16a)
o? o

Then o is a balanced vector in a positive sequence and ¢_ is a balanced vector in a negative sequence.
Moreover the set of all balanced positive-sequence vectors is span( ;) and the set of all balanced negative-
sequence vectors is span(a_), i.e., x is a balanced vector in a positive sequence and y a balanced vector in
a negative sequence if and only if

X = X104, y = -, X,y € C (1.16b)

Note that &+ = o where for any vector x, X is its complex conjugate componentwise. Define the matrix
F whose columns are o, @— as well as 1 normalized:

| L
F = —1 o o] = — |1 a o (1.17)
\/§[ | V3l & «

All main properties of balanced three-phase systems originate from the mathematical properties of
the vectors o, o and their transformation under the matrices I',I'T defined in (1.11), summarized in
Theorem 1.2. Its proof is left as Exercise 1.6. The theorem implies in particular that the transformations I'
and I'T preserve the balanced nature of a vector and hence ensures that the entire network stays balanced.
The key enabling property is that the voltages and currents from balanced sources are in span(o.) or
span(o_) and (ocy, o) are eigenvectors of I',I'T (according to (1.18a)(1.19a)).

Theorem 1.2 (Transformation of balanced vectors by I', I'T). Let o := e 12%/3_ Recall the balanced vectors
(o, o) defined in (1.16a), the matrices F in (1.17) and T, T"T in (1.11).

1. Suppose the entries x; of x := (x1,X2,X3) € C? have the same magnitude. Then x is balanced if and
only if x; +x +x3 =0.
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2. The columns of F are orthonormal. Both F and F are complex symmetric, i.e., ' T—Fand fT =F,
where F is the complex conjugate of F' componentwise. Hence

F! = FH:f:L[l o oy

V3

3. T'is a normal matrix, I'T'T = '"T". (Note that 'TT = I'"T" are Laplacian matrices of the graphs in
Figure 1.9.)

4. Spectral decomposition of T
(a) The eigenvalues and eigenvectors of I are
It = 0, Fo, = (I-a)oy, T = (1-o®)a (1.18a)

where 1 — o = \/gein-/6 and 1 — az — \/ge—iﬂ'/6.

(b) Therefore the spectral decomposition of I is:

0
r = F -« F (1.18b)
1 —a?
5. Spectral decomposition of T'T:
(a) The eigenvalues and eigenvectors of I'T are
't = o, Mo = (1-a)a, Mo, = (1-0?)ay (1.19a)
where 1 —a = v/3¢%/¢ and 1 — a2 = /3¢ 17/0,
(b) Therefore the spectral decomposition of I'T is:
0
r'r =F l—o F (1.19b)
1—o?

The following corollary of the theorem is repeatedly used in the analysis of balanced systems. It says
that the transformation of a balanced vector x under I and I'T reduces to a scaling by (1 — ¢) and (1 — a?)
respectively.

Corollary 1.3. For any balanced positive-sequence vector x € C3 and y € C, we have
. T(x+7y1) = (1—a)x.

2. TT(x+71) = (1—0o?)x.
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3.ITT(x+791) = T’ (x+71) = 3x.

Informally a three-phase system is called balanced if all voltages and currents are balanced vectors in,
say, positive-sequence sets. The main consequence of the corollary is the following. A three-phase system
consists of voltage sources, current sources, and impedances connected by lines. The voltage and current
at any point in the system are induced by the internal voltages of voltage sources and the internal currents
of current sources. When these sources are balanced positive-sequence sets, their internal voltages and
currents are in span(a, ) and @ is an eigenvector of I"and I'T. This means that the transformation of bal-
anced voltages and currents under I', I'T reduces to a scaling of these variables by their eigenvalues 1 — &
and 1 — o/ respectively. Since the voltage and current at every point in the system are linear combinations
of transformed source voltages and source currents, transformed by T, I'T and line admittance matrices,
they remain in span(a.) when the sources are balanced and the lines are identical and phase-decoupled.
This is the key property that enables balanced sources to induce balanced voltages and currents throughout
the network, leading to per-phase analysis of three-phase systems. A formal statement and its proof have
to wait till Chapter 9 (Theorem 9.7) when we develop a general model of unbalanced three-phase system.
In this chapter we will use the corollary to analyze example circuits to build intuition.

1.2.3 Balanced systems in Y configuration

Figure 1.11 shows the Y configuration of voltage sources and impedance loads. The loads are said to be
balanced if their impedances z are identical. An ideal three-phase voltage source in Y configuration is

(a) Balanced sources (b) Balanced loads

Figure 1.11: Balanced three-phase (a) voltage source EY and (b) impedance z¥ := diag(z,z,z) in ¥ config-
uration. (Fig change: Z — z.)

specified by its internal voltage (vector) EY := (E an pbn | c”‘z/ in the phasor domain between the terminals
a, b, c and the neutral n respectively. It is called balanced if E* is a balanced vector according to Definition
1.1,1.e.,

positive sequence: E™=1/6, E™=1/60-120°, E“"=1/6+120°
or

negative sequence: EM=1/0, E"™=1/0+4120°, E“"=1/6—120°
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where their magnitudes are normalized to 1. See Figure 1.12(a) where 6 = 0. For a balanced voltage source

Im Im

E E,
Re
N
YA
Ebn Ebn
(a) Phase voltages (b) Phase and line voltages

Figure 1.12: A balanced three-phase source in Y configuration. (a) Its phase voltage (vector) EY =
(E, EP" E™) is a balanced vector. (b) Its line voltage E'™ =TEY = (1 — a)EY.

in a positive sequence, the instantaneous voltages in the time domain reach their maximum values in the
order abc. We sometimes call abc in such an order a positive sequence and the voltages {Ea”,E bn E C"} a
(balanced) positive-sequence set. Whether a voltage source is in a positive or negative sequence depends
only on how one labels the wires. Therefore, unless otherwise specified, we will always consider abc to be
a positive sequence. If there are multiple three-phase sources connected to the same network their phase
sequences must be the same.

Theorem 1.2 implies the following properties of a balanced positive-sequence voltage source:

1. Sum to zero: E" + EP" + E" = ()
2. All voltages and currents are in a balanced positive sequence, i.e., all are in span( . ).

3. Phases are decoupled.

Sum to zero. The first property follows from Theorem 1.2.1, or more directly, EY = o, E** and hence
1TEY = <1Toc+> E“ =0,

Line voltage V!¢ is balanced. The second properties is due to the fact that o, is an eigenvector of
I[,I'T. Specifically the line voltage E'i" := (E® E¢, E°?) across the terminals is given by E'"® = T'EY
from (1.12)). This implies 1T E'i"® = F@> 4 Eb¢ - E¢@ — (. Moreover Corollary 1.3 implies

Eline — FEY — <1 o OC)EY

Hence E'™® ig in a balanced positive sequence if EY is, ie., E?¢ = ¢ 127/3 pab gnd Eca — (127/3 pab Since
1 — o = /36'%/ we have

Eab _ \/geiﬂ:/6 E Ebc _ \/§€in/6Ebn ) - \/geiﬂ:/6Ecn
This is illustrated in Figure 1.12(b).



Draft: EE 135 Notes April 30, 2024 29

Balanced systems are phase-decoupled. We start by analyzing the simple circuit in Figure 1.13(a)
when a balanced three-phase load is connected to a balanced three-phase positive-sequence voltage source
in Y configuration. We will show that

1. The neutral-to-neutral voltage is zero, V,,; = 0.

2. The internal voltage and current across the impedances are in a balanced positive sequence.

The most important implication is that the phases are decoupled, i.e., the variables in each phase depend
on quantities only in that phase, and can be analyzed separately. We will illustrate through examples that
these conclusions hold in more general balanced systems than the simple circuit in Figure 1.13(a). A full
understanding of phase decoupling and per-phase analysis is postponed till Part II of this book where a
balanced system is studied in the context of general unbalanced systems.

III
>

a 1, a'

+
E z
I n n
b @
>
>
1,
(a) Balanced three-phase system (b) Equivalent per-phase system

Figure 1.13: Balanced three-phase source and load in Y configuration and its per-phase model. (Fig
change: Z — z.)

Referring to Figure 1.13(a) let

« EY := (E",E",E") and V¥ := (V“/”/,Vb/”/,VC/"/) denote the internal voltages from terminals to

neutrals, and IV := (I"/”/,I”/"/,Ic/”/) denote the internal current between the terminals a’,b’, ¢’ and

the neutral n’ across the identical impedances z.

e V= (V“,Vb,VC) denote the terminal voltage (vector), with respect to an arbitrary and common
reference point, not necessarily the neutral n or /;

* V" and V" denote the neutral voltages with respect to the common reference point.

Given the balanced positive-sequence voltage EY and balanced impedances z, we wish to show that V" =
/! . . .
V" that V'Y . I' are in a balanced positive sequence, and that phases are decoupled.
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Solution. KVL, KCL, and Ohm’s law imply
EY = v-vn, vy = v-v"l, vr o= 1", 17" =0 (1.21)
Therefore EY — VY = <V”/ — V”) 1 and hence (since 1TEY = 0)
1T (EY —v") = (V”’ . V”) 1" — 3 (V"’ . V") - aTyY = (1T1’Y) — 0
showing that the voltage across the neutrals V,,, = 0. Substituting it into (1.21) yields (denoting y := 7z~ 1)
V= B (vievi )L = B " o= W = yE'

Hence both V¥ and I’ are in a balanced positive sequence. Moreover the phases are decoupled in that
Vow and Iy, ¢ =a',b’,c’, depend only on E, but not on voltages on other phases.

In view of Theorem 1.2.1, the terminal voltage V is not balanced unless V" = v = 0, i.e., the neutral
is taken as the common reference point for voltages, because

1'v = 1T(E¥+v"1) = 3v"
O

Remark 1.2. 1. Since V,,; =0, even if n and n’ are connected, the current on that wire will be zero.
We can therefore either assume n and n’ are connected or disconnected in our analysis, whichever is
more convenient.

2. Since the currents are balanced, I* +I” +1¢ = 0 or i%(t) +i®(¢) +i°(t) = 0 at all times ¢, the currents
flow from and return to the sources only via the wires connecting the sources to the loads, and no
additional physical wires are necessary for return currents. This halves the amount of required wire
compared with three separate single-phase circuits; see Chapter 1.3.3.

As a consequence, each phase of the balanced system is decoupled and equivalent to the circuit in
Figure 1.13(b). We can therefore analyze the phase a equivalent circuit; see Chapter 1.2.5. The voltages
and currents in phase b and phase c circuits will be the corresponding phase a quantities shifted by —120°
and 120° respectively, assuming the three-phase source is of positive sequence.

These conclusions hold for more general circuits than that in Figure 1.13(a), as Example 1.4 shows.

Example 1.4 (Balanced three-phase system in Y configuration). Figure 1.14 shows a balanced three-
phase source of positive sequence supplies two sets of balanced three-phase loads in parallel through
balanced transmission lines. The transmission lines have a common admittance ¢ and all loads have a
constant admittance /, as shown in the figure. Suppose the neutrals are connected by lines with a common
admittance y. Denote the internal voltages and currents in stage k = 1,2, by ka = (V% Vb ) and
I,f = (1% [ ) respectively. Denote the terminal voltages and currents from stage k — 1 to stage
k,k=1,2,by Vi := (V%1% VPi1be Y16k and [ := (1%-1%  [%-10k [%-16) respectively.

Suppose y #0,¢t =y/u, and [ = y/,u2 for some real number u # 0. Prove that
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One line diagram:

o= I I |
| 7 1
Figure 1.14: Balanced three-phase system in Y configuration (Example 1.4). (Fig change: 7 — ¢, L — [,
andY —y.)
1. Vign, = Vayn, = 0.
2. For k = 1,2, all voltages and currents VkY, Vk,llf , I are balanced positive-sequence sets.
3. The phases are decoupled, i.e.,

Ef = v+ Vf
Yy _ Y
V] — V2 + V2

where E(I)/ = (an'lO,Ebono’Econo).
This implies that the three phases of the balanced system in Figure 1.14 are decoupled and can be studied

by analyzing the per-phase circuit shown in Figure 1.15 where the line admittances connecting the neutrals
are set to zero.

Cll az
P |T| 0
]
n n,

Figure 1.15: The per-phase equivalent circuit of the balanced system in Figure 1.14 in Y configuration.
(Figchange: T —t,L—/[,and Y — y.)

Solution:
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1. We will apply Ohm’s law and Kirchhoff’s current and voltage laws (KCL and KVL) to derive two

linear equations in (Vi,yu,, Vi n,) and show that V,, ,, =V, ,, = 0 is the only solution to these equa-
tions. By Ohm’s law across each admittance, the currents are in terms of voltages:

=y =1, k=12 (1.22)

This allows us to eliminate currents I} , I, and express KCL and KVL in the following in terms only
of voltages VkY, Vie.

Making use of (1.22), apply KCL at node (ay,b;,c;) to obtain
tva()al — lvall’ll _'_tVa1a27 tvb()bl — lvblnl —|—l‘Vblb2, tV{,‘()Cl — lvclnl +tvclcz
and similarly for KCL at nodes (ay,b>,¢7). This in vector form is

Vi = IV +1v, (1.23a)
Vo = 1Vy (1.23b)

Apply KCL at nodes (ng,n1,n2) to obtain

¢ <1TV1> Lyvn — g

I <1TV1Y> + yVn0n1 _ yvnlnz

! <1TV2Y> Fyvmm = g
where 1 := (1,1, 1) is the column vector of all 1’s. Hence, since y/t = u and y/I = u?, we have

1TV = —pv™n 1TV = vty 1Ty = oty (1.24)

Finally, apply KVL around the loops from stage 0 to stage 1 to obtain
Edn0 — yad1 4 yan _ Vn0n1’ Ebono — Vbobl +Vb1n1 . V’lonl, EC0n0 — yCct Ly _ynom
and similarly for loops from stage 1 to stage 2. This in vector form is

El = vi+Vvl -y (1.25a)
Ve = v+ vy —vmmg (1.25b)

where E(’)/ = (E%™ E boro | om0, Substitute (1.23b) into the last equation to eliminate V;:

1
vl = (ﬁ“) vy — vl (1.25¢)

To obtain a system of equations that involves only (V0" V"1"2) multiply (1.25) by 17 and apply
(1.24) to obtain (using lTEo = 0 since the sources are balanced):

2 2 non
WRrpu+3 —p yrom] [0
[ —u? 2u2+u+3] [V"I"Z] - [0] (1.26)
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We now argue that the determinant of the matrix in (1.26) is nonzero, and hence V0"t = V"1"2 = (),
Let B := u?+ u+ 3. Then

determinant = B(B+pu?)—u*

If determinant is zero then

B — —%(11\@)

By the definition of B := u? + u + 3 we therefore have
B+Voul+2u+6 = 0
It is easy to check that no real number u satisfies this equation, and hence V"0t = V""" = (),

2. We now prove that (ka, Vi) are balanced positive-sequence sets. Since V1”2 = 0, (1.25¢) implies

oy
vy = v 1.27
? ! (1.27)
Substitute this and (1.23b) into (1.23a) to obtain
1 1 2 1
Vi = vy vy = SRy
u u p(pe+1)
Substitute into (1.25a) to get
2u+1
Y Y Y
= Vi +V,
©  u@+nt
Hence
1 2 1
v /;(u+) andV_uz(l'H_)
ue+3u+1 ue+3u+1

Hence Vl,VIY are balanced positive-sequence sets since Eg is. Furthermore Vz,VZY are balanced
positive-sequence sets from (1.27) and (1.23b). Then (1.22) implies that all currents (I,{ Iy are
balanced positive-sequence sets.

3. To show that the phases are decoupled, substitute V"0"1 = V"™1"2 = () in (1.25a)(1.25b).
This completes the proof. O

Remark 1.3 (Phase-decoupling of lines). 1. A key enabling property that allows the balanced nature
of voltages and currents to propagate from one node to the next is the assumption that three-phase
lines are phase-decoupled (see Example 1.4 and Exercise 1.9). This assumption is valid only if the
lines are symmetric and the sources and loads are balanced such that currents and charges both sum
to zero in these lines across phases; see Chapter 2.1.4. Otherwise an unbalanced three-phase model
of transmission lines should be used; see Part II of this book.

2. If the lines are symmetric but the sources or loads are unbalanced then variables of different phases
are coupled. A similarity transformation can be used to transform the system to a so called sequence
coordinate in which the lines become decoupled and single-phase analysis can then be applied in
the sequence coordinate; see Chapter 9 in Part II of this book.
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1.2.4 Balanced systems in A configuration

Figure 1.16 shows the A configuration of a balanced voltage source and a balanced impedance. An ideal

a
Z V4
c VA b
(a) Balanced source (b) Balanced load

Figure 1.16: Balanced three-phase (a) voltage source E2 and (b) impedance z* in A configuration. (Fig
change: Z — z.)

voltage source in A configuration is specified by its line voltage E* := (E“b ,EbC,E“’). It is balanced if
E” is a balanced vector according to Definition 1.1, i.e., assuming positive sequence:

Ebc _ efi277:/3 Eab7 ECa — ei27t/3 Eab

A balanced three-phase system in A configuration enjoys the same properties as such a system in ¥ con-
figuration in Chapter 1.2.3 does. In particular the line voltages sum to zero (see Figure 1.12(b)):

Eab+Ebc+Eca — 0

The three-phase voltages and currents in a balanced system in A configuration driven by balanced three-
phase positive-sequence sources are balanced positive sequences. Moreover the phases are decoupled. We
illustrate this in the next example.

Example 1.5 (Balanced three-phase system in A configuration). Figure 1.17 shows a balanced three-phase
source connected to a balanced three-phase load through balanced transmission lines in A configuration.
The transmission lines have identical admittance ¢ # 0 and the loads are of constant admittance / # 0. Sup-
pose the internal voltage E® := (anbo JEDoco E €040 is in a positive sequence. Denote the terminal current
by I := (%% [bob1 [€0c1) | the terminal voltage by V := (V@ Vbobi y<oct) and the line-to-line voltage
by U := (V@b yhicr yaar) We will show that 1,V,U are in balanced positive sequences, provided the
ratio

Solution. Apply KCL at nodes ay,b1,c to get (cf. (1.13)):

I =1IT'U = v (1.28)
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611 p b,

Figure 1.17: Example 1.5. (Fig change: T — 1, L — [.)

where I'T is defined in (1.11). Apply KVL to get

EA = U+TV (1.29)
where I is defined in (1.11). Eliminate V from (1.28) and (1.29) to get
A T
B = —(/,LH+FF)U - 2| -1 ut+2 -1 U (1.30)
H Rl -1 -1 p+2

where p1 :=¢/I and I is the identity matrix of size 3. The matrix ul + I'T"T has a determinant of p(u + 3)?
and hence is nonsingular provided pu # 0, —3. Since E” is a balanced positive-sequence matrix we have

(;,LH n rrT) U = ue®a,

It therefore suffices to show that ot is an eigenvector of ull + I'T"T with an associated eigenvalue A, for
then
‘LLEab

U = ,uE“b(/,L]I—i—FFT>la+ - —a

showing that U is also a balanced positive-sequence voltage (note that if Ax = Ax for a nonsingular matrix
Athen A~ lx = %x). To show that a; is an eigenvector of ul + I'T'T, we apply Theorem 1.2 to get

(p1+TTT) oy = pa +T(1-a?)ay = (p+ (1-a)(1-0)a = (u+3)ay
A
as desired. This shows that U is indeed a balanced positive-sequence voltage. Indeed
_H EA
u+3

To show that phase voltages V are also a balanced positive sequence and decoupled, use (1.28) and
Corollary 1.3 to get
2
v = iy = Laoety = L% e
H H p+3
Hence V is in a balanced positive sequence. The expression I = ¢tV from (1.28) then implies that the phase
current / is also in a balanced positive sequence and that the phases are decoupled. O
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A and Y transformation. A balanced A-configured system also has a per-phase equivalent circuit. We
now explain how to transform between A and Y configuration. This is the first step in per-phase analysis of
balanced three-phase system described in Chapter 1.2.5 where all balanced devices in A configuration are
transformed into their equivalent Y configuration, the per-phase circuit of the Y-equivalent network is then
analyzed and the result translated back to the original system with A-configured devices. This validity of
this procedure is formally proved in Chapter 9.3.4.

As explained in Chapter 1.2.1, given any balanced internal voltage V2 := (V®, V¢, V%) and current
I := (I?°, 1 [%) in A configuration, an equivalent ¥ configuration is one that has the same external
behavior, i.e., the internal voltage V¥ := (V4" Vb" V") and current I' := (I*", 1", I°") of the Y-equivalent
satisfy (1.14) reproduced here

vy = v4, r=r'A

Assume the neutral of the Y equivalent voltage source is the reference for all voltages and V" = 0. Since
VY and I* are balanced vectors, Corollary 1.3 implies

(1—a)V¥ = VA, r = (-’
Hence the Y-equivalent of (Y2,1%) is

1 1 V3
Y _ A _ A Y _ A2\ A A
v = 1_aV = \/geimv, I' = (1-a)I* = eiml (1.31a)
This implies in particular that a voltage source E® in A configuration has an equivalent Y-configured
voltage source with EY := (1 — a) "' E?. It also implies that a current source J2 in A configuration has an
equivalent Y -configured current source with J¥ := /3¢ 717/0 JA,

Consider a balanced three-phase impedance z* € C in A configuration as shown in Figure 1.18(a). An
Y-equivalent is a balanced impedance z' € C as shown in Figure 1.18(b) so that their external behavior is
the same, i.e., the terminal currents / are the same when the same line-to-line voltage V" is applied to
both impedances. Let V2 € C? and I* € C3 be the internal voltage and current across the impedance z* in

a a

c 7 b
Figure 1.18: A-Y transformation of balanced loads: Z¥ = Z# /3. (Fig change: Z — z.)
A configuration. Let Z* := diag (z*,7z%,2*). Then V4 = ZAI* and

Vline — yA _ ZAIA7 I = —I''A = —(l—OCZ)IA
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where the last equality follows from Corollary 1.3. Hence, for A-configured impedance, the line-to-line
voltage V" is related to the terminal current / according to

1

A
1—0522 1

Vlme —

For the Y-equivalent, let V¥ € C3 and I¥ € C3 be its internal voltage and current across the impedance z¥
in Y configuration. Let Z' := diag (zy,zy,zy). Then V¥ = Z¥I' and Corollary 1.3 implies

Hence, for Y-configured impedance, the line-to-line voltage V'i"® is related to the terminal current  ac-
cording to

vie = —(1-a)Z"1

The relationships between the line-to-line voltage V" and the terminal current  for both the A-configured
impedance and its Y-equivalent will be identical if and only if

v 2 2
¢ = e = 3 (131b)

The corresponding admittances y! := (ZY) ! and YA = (zA) ! are related by y¥ = 3y2.

1.2.5 Per-phase analysis

A balanced three-phase system consists of balanced three-phase sources and loads connected by balanced
(identical) transmission lines. Given a balanced three-phase system with all sources and loads in Y config-
uration, assuming there is no mutual inductance between phases, then

* all the neutrals are at the same potential;
* all phases are decoupled;

* all corresponding network variables are in balanced sets of the same sequence as the sources.

These properties lead to equivalent per-phase circuits, as explained in Chapter 1.2.3. Even though we have
only illustrated these properties for simple systems, they hold more generally. They allow us to study such
a system by analyzing a single phase, say, phase a. The corresponding variables in phases b and c lags
those in phase a by 120° and 240° respectively when abc is a positive sequence, and by 240° and 120°
respectively when abc is a negative sequence.

When some or all of the sources and loads are in A configuration, the phases are still decoupled
and can be analyzed separately. To obtain the equivalent per-phase circuit, however, we first transform
each A-configured device into an equivalent Y-configured device using the transformation (1.31a) for
voltage sources and (1.31b) for impdances. We then analyze the equivalent circuit that consists of only
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Y-configured devices. Finally we translate the results for equivalent ¥ configuration back to the corre-
sponding quantities in A configuration.

We emphasize that these transformations hold only in the balanced case with balanced sources, identi-
cal impedances, and symmetric transmission lines. Moreover the equivalence of these two configurations
is with respect to their external behavior (V. 14, etc); for internal behavior, we have to analyze the original
circuit; see Example 1.6.

In summary, the procedure for per-phase analysis is:

1. Convert all sources and loads in A configuration into their equivalent Y configurations using (1.31a)
for sources and (1.31b) for loads.

2. Solve for the desired phase a variables using phase a circuit with all neutrals connected.

3. For positive-sequence sources, the phase b and ¢ variables are determined by subtracting 120° and
240° respectively from the corresponding phase a variables. For negative-sequence sources, add
120° and 240° instead.

4. If variables in the internal of a A configuration are desired, derive them from the original circuits.
This procedure is formally justified in Chapter 9.3.4. We illustrate it with an example.

Example 1.6 (Per-phase analysis). Consider the balanced three-phase system shown in Figure 1.19.
The three-phase sources are a balanced positive sequence in A configuration with line voltage E%® =
\/gei”/ 6Fan_etc. The A-configured loads are balanced with identical admittances /;, and the Y-configured
loads are balanced with identical admittances /;. The transmission lines are modeled by admittances #; and
t>. Find the current i} () and voltage v,(¢) in the diagram. Assume 31l + 3l1t, + [ () +12) + 11, # O.

Solution. First we convert the A sources to their equivalent Y sources using (1.31a) and A loads to their
equivalent Y loads using (1.31b). The result is shown in the upper panel of Figure 1.19(b). Then we
construct the equivalent per-phase circuit with all neutrals n,n{,n, connected, as shown in the lower panel
of Figure 1.19(b).

We analyze the per-phase circuit to solve for voltages
Vi = V49" and V, = V@
Applying KCL to nodes a; and a, we get

Hn(E"™=Vy) = 31Vi + (Vi —V,)
o) (V] —V2) = bW

Hence

31+t +1 —I Vi
) —(h+t)| V2

HE™
0
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One line diagram: +() E, 3L I:L]

o | | |
| ] 1
(a) Balanced three-phase system (b) Equivalent per-phase system

Figure 1.19: Balanced three-phase system and its per-phase equivalent circuit. The balanced three-phase
loads have admittances /; and [, and the transmission lines have admittances #; and #,. (Fig change: T — ¢,
L—1)

By assumption, the determinant

A = —(31112—{—3[1t2—|—12(l1—1—[2)—{-1‘11‘2)
1s nonzero. Hence
il _ 1|=(b+n) ) nE™| _ —HE" Ih+n (1.32)
ol Al b 3h+t1+n|| 0 A ) '

Since V4™ =V,, we get:
wa(t) = V2|Vacos(wt+ £V5)

where @ is the steady-state system frequency and V; is given by (1.32). To calculate

i) = V2|1 cos(@r + LI (1.33)
we use (1.31a) to first get

vab = \/3,7/6y,

where V] is given by (1.32). Hence

b = pyabt — /37,670y,
Since the sources are a positive sequence we have

(U = e _jaibi2/3 3 5T/631 y — 3,/3,717/0)y,

where V] is given by (1.32). Substituting /1! into (1.33) yields i1 (¢). O



40 Draft: EE 135 Notes April 30, 2024

1.2.6 Example configurations and line limits

The secondary sides of three-phase distribution transformers in the US are commonly configured as shown
in Figure 1.20. For our purposes we can treat them as balanced three-phase sources. Figure 1.20(a) shows

| a
a V.| =120V
‘ d V,|=240V
V..[=120V |
\ V,.a| =120V
n V., |=208V [ 1 l b
v, T —
v, |=120v V| =208V
l b V.| =240V
c
c |
(a) 208Y /120V 3-phase Y (b) 240V split phase A

Figure 1.20: Common distribution transformer configurations.

the secondary side of a typical 5-wire three-phase transformer in Y configuration. Three phase wires
(labeled a,b,c) and a neutral wire (labeled n) are shown. The fifth wire, not shown, is the earth ground
wire, typically connected to neutral. A different voltage magnitude can be supplied to a load depending
on how it is connected. The voltage magnitude between a phase wire and the neutral is 120V and that
between a pair of phase wires is 120v/3V = 208V.

Figure 1.20(b) shows a 5-wire transformer in A configuration with one of the phases center-tapped to
provide three voltage levels. Four phase wires (labeled a, b, c,d) are shown but an earth ground wire is not
shown. The voltage magnitude between wires ad or bd is 120V, whereas that between wire cd 1s 208V
(derive this). The line-to-line voltage magnitude is 240V.

Line limits. Figure 1.21(a) shows a Y-configured voltage source connected to a set of loads in A configu-
ration. The voltage source is the secondary side of a three-phase 208Y /120V transformer shown in Figure
1.20(a). The voltage magnitude across each load is the line-to-line voltage 208 V. Figure 1.21(b) shows the
electric panel arrangement to connect the loads to the voltage source. The dot in the first row indicates that
the wires numbered 1 and 2 are connected to phase a, the dot in the second row indicates that the wires
numbered 3 and 4 are connected to phase b, the dot in the third row indicates that the wires numbered 5 and
6 are connected to phase ¢, and so on. Therefore the load connected between wires 1 and 3 is connected
between phase a and phase b lines (see the corresponding labels on the loads in Figure 1.21(a)). Similarly
for the load connected between wires 2 and 4, and other loads connected between different phases.

We are interested in the currents Jo := (1904 %P1 J%¢1) supplied by the three-phase source to the
loads. Suppose the wires connecting the three-phase source to the loads are rated at /™**. Then we require
that the current magnitude in each phase be bounded by I™#*:

PP < ™% p—q b (1.34)
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ckt| BUS CKT
cee No | A B AC| O
|1 | 2 |
|3 | 1 4 |
5| 1 6|
| 7| | 8 |
9 | 10|
11| 112 |
113 | 114 |
115 | 116 |
17 | 118 |
19 | 120 |
121 ] 122 |
L & A
125 | 126 |
27 28
L & ﬂ
1 31 32
- Ed 3]
4 135 | 136 |
> kil £
139 | 140 |
I, ] 2
(a) Voltage source supplying loads in parallel (b) Panel ar-
rangement

Figure 1.21: (a) Three-phase voltage source connected to loads in parallel. (b) Three-phase panel used to
connect loads in parallel to the voltage source.

Suppose the loads are not impedance loads, but constant current loads that draw specified currents. Let
the current drawn by the load in Figure 1.21(a) between wires 1 and 3 be [151 that between wires 9 and 11
be 1%1¢1 that between wires 5 and 7 be €191, In general, let the load currents in the kth three-phase load be
I := (19bx [Pxex [ ) We now derive bounds on the load currents (Iy,k = 1,...,K) that enforce the line
limits (1.34). Recall that magnitudes (|I%% |, |I9<| |I%9|) of the current phasor are the root-mean-square
(RMS) values of their sinusoidal currents in the time domain. Therefore bounding (|I%Px |, [I%¢k|, |1%4%|)
bounds the RMS values of the currents.

Before proceeding, we mention as an example application the smart charging of electric vehicles where
each load is a vehicle. We are to design an algorithm that determines the charging rate, i.e., current
magnitude |17« |, for each vehicle to optimize certain objective subject to capacity constraints such as
(1.34) and other constraints. Such an algorithm can be applied periodically, e.g., every minute, to update
the charging rates. Note that in this kind of applications, the system is unbalanced since the loads |IPx%|
are generally not identical across phases, but here we ignore the effect of wires connecting these devices.

Applying KCL at nodes (ay,b;,c;) we have

0% 1 0 —1] [1a» [H®
[ = |1 1 0| (1| 4 [P
90 0 —1 1| [« 1912
N—— N ~~ s N —
Jo rT Iy J1

where Jj := ([%%%+1 TPkt Ot ), k=0,...,K—1, are the line currents from stage k to stage k+ 1. In
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general we have
Jo =TT + T, k=0,.... K—1
Hence the total supply currents are given by
Jo = T (lo+h+-+Ig) (1.35)
when there are K three-phase constant current loads. Note that this expression does not require that the
loads are balanced. In particular, if a load (say) [%P ig absent, then we set 1%’ = 0 in (1.35).

Let the total load current in each leg of the A configuration be denoted by

K K K
1 =Y e o= Y e =Y e (1.36)
k=1 k=1 k=1

Then (1.35) can be written in terms of the total load currents as:

[ 1 0 —1] [r#
bl = f—=1 1 0] |I*
[ 0 —1 1] |1

The line limits (1.34) are therefore

| JAoa ‘ — ‘ Iab o Ica’ < Jmax
’ Ia0b1 ‘ _ ‘ Ibc _ Iab’ < Jmax
| Joct | _ ‘ J4 — IbC| < Jmax

Enforcing line limits requires one to know not just the magnitudes of the load currents, but also their
phases in order to compute their sums. As explained in the caption of Figure 1.22, these inequalities are

Im

Ia0a1

I\ | ¢aya,
-\ Re
Iab

Paga,: = 1% — 21

Figure 1.22: [%% = [% _ J¢@_Hence by the cosine rule |[%0% |* = ‘I“b‘z—i— 199> — 2|19 |1°*| cos ¢ where
Paga; = LI — ZI% is the angle between I and I°*.

equivalent to:

‘Iab|2_|_ylca‘2 o 2|Iab’ ‘Ica’ COS(PaOa] < (ImaX)Z (1383)
‘Ihc|2—|—’1ab‘2 . 2|IbC’ |Iab’ Cos¢b0b1 S (ImaX)Z (138b)
P2 = 2|1 17| cos Peye, < (I™)? (1.38¢)
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If we know the angles ¢,,,,, p = a,b,c, between the total load currents (I“b,lb",l"“) in each leg of the A
configuration, then (1.38) are convex quadratic constraints on the magnitudes of (I%?,1°¢,I°*). We next
consider several special cases and derive simple bounds on the magnitudes (19|, |I%|, |I%%|) of the
individual load currents that will enforce (1.38).

Assumption 1: Current phasors 1% have the same, and known, phase angle 6, for all k; similarly for
1%k and %% From (1.36) we have

. K
Iab = eleub Z

k=1

Jbi

K K
7 Ibc — eiﬂbc Z |Iakck’7 4 — eiem Z |Iakak|
k=1 k=1

and constraints (1.38a) become

X 2 K 2 K K
(Z 1) ' (Z"”k”k’) _2<Z )(Zwk“k!)%waom < @A)
k=1 k=1 k=1 k=1

where c0S @y, := O:q — Oy 1s known. Similarly for constraints (1.38b) and (1.38c). These are quadratic
constraints in the magnitudes (|I%P% |, |I%¢k | |[%%]) of the individual load currents that will enforce (1.38),
given the angles ¢,,,,, p = a,b,c, between the load currents in different legs of the A configuration.

Iakbk

Assumption 2: In addition to Assumption 1, the angles ¢p,,, = 120°, for p=a,b,c. Then cos @, = —1/2
and (1.39) becomes
K 2 K 2 K K
Z J9Dr + Z 1| | Z J%bk Z | 19| < ( ]m‘ﬂ"‘)2 (1.40)
=1 k=1 k=1 k=1

Similarly for constraints (1.38b) and (1.38¢).

Assumption 3 (balanced case): All load currents have the same magnitude and the phases of currents on
different legs of the A differ by 120°. That is, assuming positive sequence, for all k = 1,..., K, we have

Jbk — Ieieab, JHCk  — IeiebC’ %% — [0
where [ is the common magnitude of the load currents, and
0. — Ope = 120°, Op.— 6., = 120°, 6.,— 06, = 120°

Then the constraint (1.40) reduces to 3K 1< (Ima")z, or a bound on the common magnitude / of individ-
ual load currents

Imax

V3K

I<

(1.41)

Linear bounds. Many applications operate in unbalanced conditions, e.g., adaptive electric vehicle charg-
ing where the magnitudes |kaqk| of the load currents are to be determined and generally different. In
these cases there are two difficulties with the line limits (1.39) and (1.40). First the angles (6,5, Oy, Ocq)
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may not be known. Second even when these angles are known, the constraints are quadratic which can
be computationally too expensive to implement in real time in inexpensive devices. In this case, we can
impose linear constraints which are simpler but more conservative.

Take phase a as an example. Since [[%%| = [[® —[°¢| < |[%®| + |1°?|, a simple limit on the load
currents that enforces |[901| < ™ is to require

|Iab’_+_|1ca| < Jmax

1.e., the sum of the magnitudes of the total load currents in legs ab and ca should be less than the current
rating I™**, From (1.36) we have }I“b| = ‘Zklakbk‘ < Y, |I%P|. Hence a simple linear bound on the
load current magnitudes is:

K
y (\I“k”k\ + \1“k“k\> < e (1.42)
k=1

The constraints on phases b and ¢ are similar.

For a balanced system we can easily assess how conservative the bound (1.42) is compared with the
exact limit (1.41) on the load currents. In the balanced case the bound (1.42) reduces to

Im ax

I <
- 2K

Hence it is \@/2 ~ 87% of thatin (1.41), i.e., it is conservative by ~ 13% for a balanced system.

1.3 Complex power

1.3.1 Single-phase power

Instantaneous power. When a voltage v(¢) is applied across two ports and a current i(¢) flows between
them, as shown in Figure 1.23(a), energy is delivered to the network that connects the ports. We define the
instantaneous power supplied as:

o) = v()ilt) = %(cos(GV—91)+cos(2a)t+0v+91)) (1.43)

Since the last term inside the bracket of (1.43) is sinusoidal with twice the nominal frequency w the
average power delivered is

1 (T Vinax/,
—/ p(tydt = —="=cos(6y —6)
T Jo 2

where T :=271/ o.
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v
i(t) 1

+O— + O————— .
S=VI

/o

v(t) pt)— |4 S — v Re
-o—— -o—— J
(a) Instantaneous power (b) Complex power () S=VvIr*

Figure 1.23: Definition of power

Complex power. Define the complex power in terms of the voltage and current phasors as:

Vinaxt, . .

S = VI = TR 0]y (1.44)
where I* denotes the complex conjugate of /. See Figures 1.23(b) and (c). Here ¢ := 6y — 6; is called
the power factor angle and cos ¢ is called the power factor (PF). Power engineers often says leading or
lagging power factor: here lagging means current I lags voltage V so that ¢ > 0. A leading power factor
has ¢ < 0. A unity power factor means ¢ = 0. Figure 1.24 shows four complex powers

I
2 3 Sz ﬂ.&
2 I I S
I ? =P
| ;

Figure 1.24: Power factor angles ¢ and power factor cos ¢.

S := P+i0, S, == P—iQ, Sy := —P+iQ, S == —P—iQ

with power factor angles ¢ := 0, ¢ := —0, ¢3 := 7 — 0, and ¢4 := —7m + O respectively. Here P,Q > 0
and 6 € [0, w]. Their power factors are

P —P
PZ—QZ = COS ¢27 Cos ¢3 = PZ—QZ = COS ¢4
+ +

Therefore power factor cos@; does not differentiate between S| and S,. Power engineers specify S| as
power factor cos 0 lagging (¢; > 0 and therefore Q; := Q > 0) and S, as power factor cos 8 leading
(¢ <0 and @y := —Q < 0). Similarly S3 has a power factor —cos 0 lagging (¢3 > 0 and Q3 := Q > 0)
and S4 has a power factor —cos 0 leading (¢4 < 0 and Q4 := —Q < 0). For example “a load draws 100kW
at a power factor of 0.707 leading” means that the real power Re(S) = 100 kW and cos ¢ = \/Li Since the

power factor is leading, ¢ = —45° and S = 100 — j100 kVA .

cosP; =
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Note that S is not a phasor because v/2|S| cos(@t + ¢) is not the instantaneous power in the time
domain. This complex quantity is important in power flow analysis in the phasor domain, as we will see.
The real part of S

P = |V||[[|cos¢
is called the active or real power and its unit is W (watt). The imaginary part of S
Q = |V||I[sing
is called the reactive power and its unit is var (volt-ampere reactive). We write both § = P+ jQ and

S = |V||I|e". The magnitude |S| = |V||I| is called the apparent power and its unit is VA (volt-ampere).
Given an active power P and a power factor cos ¢, the complex power S is given by (since P = |S| cos ¢)

_ P
cos ¢

i.e. the complex power is completely determined by the active power P and the power factor angle ¢.
Power is balanced at every node in a network. Referring to Figure 1.25, if Ij; and S are sending-end
current and power respectively from node j to node k, then power balance at node j means }; S = 0.

V- T
O
‘\

Figure 1.25: Power balance at a node.

This is a consequence of KCL } ;I j; = 0 and the definition of branch power S j; := le;‘k.

Relation between instantaneous and complex power. The complex power S in the phasor domain
is related to the instantaneous power in the time domain as follows. We can use (1.43) to express the
instantaneous power p(¢) in terms of active power P and reactive power Q as (Problem 1.10):

p(t) = P + Pcos2(wt+ 6;) — Qsin2(wt + 6;) (1.45)
It is then clear that the active power P is equal to the average power delivered (in the time domain):

1 T
P = = t)dt
T/() p(e)

as the last two terms in (1.45) average to zero over a cycle 7. The reactive power Q determines the
magnitude of the instantaneous power p(t).
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Power delivered to an impedance. The current and voltage across an impedance z is related by Ohm’s
law, V = zI and hence

\%4
lz| = % and Jz = 6y—6; =: ¢

Therefore from (1.44)
S = I = [2||I]Pe*
and
P = |z]|I]200s¢ and Q = \ZH1|25111¢

The active and reactive power for the three passive elements are given in Table 1.2.

| | 1o [o=2] P ] o |
Resistor z =r r 0 rl1? 0
Inductor z = i@/ ol n/2 0 ol|I)?
Capacitor z = (ioc) ™! | (wc)™! | —x/2 0 | —(wc) M

Table 1.2: Power delivered to RLC elements.

Therefore the power delivered to a resistor is active (Q = 0). The instantaneous power p(t) := v(¢)i(t)
is

p(t) = ri*(t) = rl3, cos’>(wt+6;) = P(1+cos2(wr+6;))

which is (1.45). Table 1.2 also implies that the complex power delivered to an inductor or a capacitor is
reactive. Substituting into (1.45), the instantaneous power p(t) to a purely reactive load depends only on
the reactive power Q:

(1) = —Qsin2(wt+6;)  for inductor z = jwl
P B Qsin2(wt +6y)  for capacitor z = (jac) ™!

i.e., the net (average) power delivered to the load is zero and the instantaneous power is sinusoidal with
twice the frequency and has an amplitude Q.

Example 1.7. Suppose z = j®! (inductance) or z = ( ja)c)_1 (capacitance). Prove directly in time domain
that the average delivered power is 0 and the amplitude of the instantaneous power is Q.

Solution: Suppose power is delivered to an inductor z = jwl. Let the current be i() = Imax cos(wt + 6;).
Then the voltage v(t) across the inductor is given by
di
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and therefore

p(t) = v(1)i(t) = —wlI2,, sin(wr+ 6;)cos(wr + 6))
12
= ol T sin2(wr+6)) = —ol |I|* sin2(ot + 6;)
= —Qsin2(wr+6)

where the last equality follows from Q = |z||I|* sin Zz = l|I|* since Zz = %. Moreover the average power
delivered is

1T
P = — tHdt = 0
T/Op()

The case of capacitor load z = (j@c) ! is similar and omitted (see Exercise 1.12). [

1.3.2 Three-phase power
Under balanced three-phase operation, the total instantaneous power delivered is constant and the total
complex power is 3 times the per-phase complex power.
Indeed, for a balanced three-phase positive-sequence source, we have
b —i2n/3 —i27/3 i2rw/3 i2r/3
ybn — yan =i r/ L L T/ and V" = yan i T/ L U T/

Hence
S3¢ — VanlanH +VbnlanH +Vc’n1anH _ 3Van1anH — 38
where § := V'[%H {5 the per-phase complex power.

For instantaneous power, we have from (1.43), for a balanced three-phase positive-sequence source,
p3p(t) = V(0)i(0) +V0 ()i (e) + v (1)i(r)
[VE||I%] (cos ¢ + cos(2et + By + 6f))
+ [V|I?| (cos ¢ + cos(2wt + (By —27/3) + (6 —27/3)))
+ |V |I¢] (cos ¢ +cos(2wt + (By +27/3) + (67 +27/3)))
= 3|V cosd + [V||[I|(cosB(t) + cos(O(t) —4m/3) + cos(O(r) +4m/3))
= 3P

where 6(¢) := 2t + Oy + 67 and P is the per-phase active power. Here the last equality follows from
cosx+cos(x —4m/3)+cos(x+4m/3) = Re (eix + el 47/3) ei(x+4”/3))
and

(eix 1 plldn/3) ei(x+47r/3)> _ ( A 4 i t27/3) ei(x—27r/3)) — 0

where the last equality follows from Theorem 1.2.
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1.3.3 Advantages of three-phase power

There are two main advantages of balanced three-phase systems over a system with a single phase or that
with other polyphases.

First it offers several benefits to motor operation. The total instantaneous power p3(¢) = 3P delivered
is constant over time in a balanced three-phase system. On a generator or motor this produces a constant
mechanical torque, reducing vibrations, noise, wear and tear, and other mechanical issues. A three-phase
system can also self-start an induction motor.

In contrast, the instantaneous power
pip(t) = P+ |V||[|cos(Qwt+ 6y +6;) =: P+|V||[|cosO(t)

in a single-phase system, where 0(z) := 2t + 6y + 6y, is a sinusoidal signal with twice the system fre-
quency. This is the case also with a two-phase system where the instantaneous power is

p2o(t) = |V|I*|(cos ¢ +cos(2wt + Oy + 6;)) + [V||I?] (cos ¢ +-cos(2wt + (By + ) + (67 + T)))
= |V|[I*|(2cos ¢ +cosO(t) +cos(O(t) +2m))
= P + 2|VY|[*|cosO(r)

It can be shown that for K > 3, a balanced K-phase system has pky(t) = KP independent of ¢ (Exercise
1.11). Even though a balanced four-phase system also has time-invariant instantaneous power, its design
is more complex than a three-phase system.

Second a three-phase system typically saves materials and thermal loss (r|I?|) compared with a single-
phase system that serves the same load. For example, it is clear that the single-phase system that consists
of three identical subsystems shown in Figure 1.7(a) needs twice as much transmission line and incurs
twice as much thermal loss in transmission as the balanced three-phase system in Figure 1.7(b), since the
balanced three-phase system has zero return current and hence does not need a neutral line.

The following example compares a balanced three-phase system with a single one-phase circuit with
a higher ampacity, as opposed to three identical subcircuits in Figure 1.7(a), to supply the same load. The
same conclusion holds that the three-phase system needs half as much conductor and incurs half as much
transmission loss.

Example 1.8 (Single-phase vs three-phase systems). Consider two systems that deliver a specified ap-
parent power |S| at a specified voltage magnitude |V| to a constant power load, as shown in Figure 1.26.
The distance between the generation and the load is d. The first system is single-phased and the second
system is balanced three-phased. Compare the required amount of wire and thermal loss in the line in
these systems.

The line has an impedance z := r+ jx per unit length where the resistance r per unit length is inversely
proportional to the area of the line with proportionality constant p. The current density limit of the line is
0 in ampere per unit area.

Solution. A single-phase system requires two cables, one for return current, each carrying a current of
magnitude |I;4| = |S|/|V|. This is illustrated in Figure 1.26 with zop = z. A balanced three-phase sys-
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A 4

z=r+jx

Zg=2zor0

Figure 1.26: A system that delivers power |S| to a load at voltage |V|. The distance between the generation
and the load is d. The line has an impedance z := r + jx per unit length.

tem requires three cables, each carrying a per-phase apparent power of |S|/3 and a per-phase current of
magnitude |134| = |S|/(3|V]). The per-phase equivalent circuit is illustrated in Figure 1.26 with zo = 0.

For the single-phase system the required cross-sectional area of the cable is

el _ - IS1
5 S|V

Hence the amount of material (volume of the cable) required is

A1¢

d|S
myy = 2A 1¢d = %
Moreover the resistance per-unit length of the cable is
p_ pélV|
I‘1¢ _— =
Atp N

and hence the active power loss in the cable is

2p8|V| dIS|> _ ,pddls|
S| VP 4

ll¢ = 2r1¢|11¢|2d =

For the balanced three-phase system the required cross-sectional area of the cable in each phase is

ol IS

Ao 5 = 30|V

Hence the amount of material required is

d|S| 1

S|V~ 2

Moreover the resistance r3¢ per unit length of the cable is

msgy = 3A3¢.d =

P 3po|V|
A3p N

I‘3¢
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and hence the active power loss in the cable is

op3lv| dIs? _ pddls| _ 1,
S| 9vE T v 27

Ly = 3r3¢]13¢|2d =

i.e., the balanced three-phase system uses half as much material and incurs half as much loss as the single-
phase system. O

Remark 1.4. 1. Example 1.8 also shows that thermal loss r|I|? is inversely proportional to |V|. Intu-
itively a higher load voltage |V| requires a smaller load current |I| to deliver the same amount of
power |S|, resulting in a smaller thermal loss in the grid.

2. Itis shown in Exercise 2.7 that, given a desired load power, the active line loss is inversely propor-
tional to the square |V |? of the load voltage magnitude, rather than |V | derived here. This is because,
in Exercise 2.7, the line resistance is given and independent of load power and voltage |V |, whereas,
here, the line resistance 734 is chosen to be proportional to |V | (reducing the dependence of line loss
r3¢\13¢|2 from ‘V‘z to ’V’)

3. Note that V is the voltage drop across the load, not the voltage drop across transmission line z which
is zdI = zdS* /V*. In the case of balanced three-phase system (where zgp = 0 in Figure 1.26), if the
load power S and voltage V are specified then the required squared voltage magnitude at the source
is

*

2 2
s K

= |V]? + d|z]>—5 + 2dRe(z"S)

dl + V|*? =
|zdI + V| VP

4. In practice most three-phase systems do include a grounded neutral line to carry unbalanced current
during asymmetrical conditions, e.g., due to line faults, and reduce voltage transients during line
switching or lightning events. Since the unbalanced current is much smaller than the phase currents,
the neutral line is typically much smaller in size and ampacity and therefore much cheaper.

1.4 Bibliographical notes

There are many excellent textbooks on basic power system concepts, e.g., [1, 2, 3, 4]. Many materials in
this chapter follow [1]. The example comparing the savings of single-phase and three-phase systems is
from [4]. Circuit theory is a well established field. For general circuit analysis using KCL and KVL, see,
e.g., [5, Chapter 12]. The connection with algebraic graph theory is recently surveyed in [6].

1.5 Problems

Chapter 1.1.

Exercise 1.1 (KVL). Prove that Kirchhoft’s voltage law (1.3b) is equivalent to (1.4b). (Hint: See Ap-
pendix 25.2 and use Theorem 25.35.1 and Theorem 25.35.2.)
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Exercise 1.2 (Circuit analysis). Consider a 3-node 3-link circuit specified by:

1 0 1
incidence matrix € = |—1 1 0 |, impedances z; = z23 = 1, voltage source v3
0o -1 -1

Use (??) to determine the currents J := (J2,J23,J13), voltages U; := (Ujz,Up3) and nodal voltages V :=
(V1,V2), assuming without loss of generality that node 3 is the reference node with V3 := 0.

Exercise 1.3 (Circuit analysis). For the three-bus network in Figure 1.5, derive the current balance equa-
tion (1.9a) by analyzing the equivalent circuit using KCL, KVL, and Ohm’s law, as explained in Chapter
1.1.4. Draw the equivalent circuit.

Exercise 1.4 (One-line diagram and IT circuit). Derive (1.9) I =YV from the one-line diagram of a general
network by analyzing its equivalent circuit.

Chapter 1.2.

Exercise 1.5 (o := e 7127/3), Prove the following properties of & := e 4120 (see Figure 1.27):

2 3 4

=1, q :OC,(XkZOCk mod 3

. o“=0a, o where @ denotes the complex conjugate of a.
2. 1+a+a*=0.

3. 1—a=+/3430°, 1 —a?=+/3£-30°.

4. 1+a=—-a’>=1£-60°, 1+ 0 = —a = 1260°.

5. §+ =0_,0_= oy

Exercise 1.6 (Proof of Theorem 1.2). Let o := e 127/3  Recall the matrices F defined in (1.17) and I in
(1.11), reproduced here:

1 | 1 1 1
F = —N a a] = —=|1 a o, r =10 1 -1
\6[ | 1 o> «

1. Suppose the entries x; of x := (x1,X2,X3) € C? have the same magnitude. Then x is balanced if and
only if x; +x +x3 =0.
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Figure 1.27: Properties of o from [7, Fig. 3, p.9].
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2. The columns of F are orthonormal. Both F and F are complex symmetric, i.e., ' T—Fand fT =F,
where F is the complex conjugate of F' componentwise. Hence

F' = Ff = F = \%[1 o oy
3. T'is a normal matrix, [TT =TT
4. Spectral decomposition of T
(a) The eigenvalues and eigenvectors of I" are
It = 0, To, = (1—a)oy, To. = (1-o?)a_ (1.46)

where 1 — a = v/3¢'7/¢ and 1 — o2 = /3¢~ 17/0,

(b) Therefore the spectral decomposition of I is:

0
r = F - F
1—o?
5. Spectral decomposition of T'T:
(a) The eigenvalues and eigenvectors of I'T are
It = 0, To. = (1-a)ao_, To, = (1-o?)ay (1.47)
where 1 — a = v/3¢'%/¢ and 1 — o2 = /3¢~ 17/0,
(b) Therefore the spectral decomposition of I'T is:
0
r' = F l1—o F (1.48)
1—o?

Exercise 1.7. Show that the voltage magnitude ]VCd] =208V in the split-phase Delta transformer in Figure
1.20(b), assuming the system is a balanced three-phase positive sequence.

Exercise 1.8. Consider the balanced three-phase system in Y configuration shown in Figure 1.28. Show
that V0™ = () provided z # —(z1 +11)/3.!
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Circuit diagram:

One line diagram:

s :

Figure 1.28: Balanced three-phase system in Y configuration where the impedances z,z;,/; are given.
(April 3, 2024: Fig change: Z =z, L — [.)

7 1

Figure 1.29: Balanced three-phase system in Y configuration where a three-phase voltage source in posi-
tive sequence supplies m three-phase loads in parallel. (April 3, 2024: Fig change: Z — z, L — [.)
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Exercise 1.9 (Balanced Y loads). Consider the balanced three-phase system in Y configuration shown
in Figure 1.29 where a three-phase voltage source in positive sequence supplies m three-phase loads in
parallel. All transmission lines have a common admittance 7 = 1 and all loads have a common admittance
L. Consider the following 10m variables:

* avoltage and a current for each phase at each stage k =1,...,m:
Vakl’lk Iaknk
Vi = |Vhou and I, = Lping | k=1,....m
V Skl ICk”k

for a total of 6m variables.
* a current for each phase from stage k — 1 to stage k:

I,

B ax—1ag
Je—1x = i | k=1,....,m
ICk—lck
for a total of 3m currents.
* avoltage between neutrals from stage k — 1 to stage k: V"-1"_k=1,... m, for a total of m voltages.

1. Show that V1" =0Qfork=1,...,m.

2. Show that
Ve = B, EY0no, o — ﬁkEbO”O7 Vet = B EO"0 k=1,....m
where B is:
b o A=A
g (r=1)=r{'(n—1)
and r, rp are given by:
1
na = 3 ((L+2) + L(L+4)) (1.49)

(Hint: Derive a recursion on Vj across stages k and solve the difference equation for each phase
a, b, c separately.)

3. Show that Vi, i, Ji—1 « are balanced positive-sequence sets fork = 1,...,m.

'Suppose the impedances z,z;,/; all have positive resistance, which is the case in practice. Then this condition is automat-
ically satisfied. If 3z = —(z; + ;) holds, however, then V"1 can take any value and Kirchhoff’s laws will be satisfied because
1" 41,4+ 1, + 1. = 0 will always be satisfied for any value of V"0"1,
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Chapter 1.3.

Exercise 1.10. Show that the instantaneous power in the time domain can be expressed in terms of real
and reactive powers in the phasor domain:

p(t) = |V||I|(cos¢ +cos(2mt+ Oy + 6;))
P (1+cos2(wt+6p)) —Q sin2(wt + 6)

where ¢ := 0y — 0y is the power factor angle, P := |V||I| cos ¢ is the real power and Q := |V|||sin ¢ is the
reactive power.

Exercise 1.11 (Instantaneous power). Consider a balanced K-phase system with K > 3 and for k =
0,---,K—1,

vi(t) = V2|V|cos (fot+ <9v +k2£)), in(t) = V2|I|cos (a)t+ (61—|—k2%>)

Show that pgy(t) := ZkK:_OI vi(t)ix(t) = KP where P := (1/T) fOTvo(t)io(t)dt = |V||I|cos(6y — 6;) and
T:=27/0.

Exercise 1.12. Suppose z = 1 /iwc (capacitance). Prove directly in time domain that the average delivered
power is 0 and the magnitude of the instantaneous power is Q.

Exercise 1.13 (Power meter). A power meter measures voltage and current magnitudes (rms values)
([V1],|I]) and instantaneous power p(z) over 1 or more period 7. In addition to reporting (|V|,|1]), it
usually reports real and reactive power (P, Q), apparent power |S|, and power factor as well. Explain how
to calculate these quantities.

Exercise 1.14. Consider Figure 1.30.

1. Shunt capacitor is VAR source: Prove that in Figure 1.30(a), S = S| +iwC|V|>.

2. Short transmission line is inductive: Prove that in Figure 1.30(b), if |V,| = |V] then S, = S'l".
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1
o 'e) o—»——%)——o
s + + +
1 p
S, — C T \% S, — S — v, S, —
o — o o= =0
(a) Shunt capacitor is VAR source (b) Short transmission line is inductive

Figure 1.30: Conservation of power



Chapter 2

Transmission line models

An electric network consists of transmission lines that transfer power from generators to loads. In this
chapter we develop models for terminal behavior of a three-phase transmission line that map the voltage
and current at one end of the line to those at the other end, in two steps. In Chapter 2.1 we derive inductance
and capacitance parameters of a transmission line as functions of line geometry. In Chapter 2.2 we use
these parameters to develop circuit models for short, medium, and long-distance transmission lines. These
line models are building blocks for network models developed in later chapters.

2.1 Line characteristics

The alternating currents in the conductors of a three-phase transmission line create electromagnetic in-
teractions among them that couple the voltages on, and currents and charges in these conductors. In a
balanced operation however the interactions are as if the phases are decoupled. This allows per-phase
analysis where, in each phase, the line can be characterized as a combination of a series impedance and a
shunt admittance parameterized by:

series impedance per meter z = r+iw!/ Q/m

shunt admittance per meter to neutral y := g+ioc Q! /m

In this section we present models for these per-meter line parameters (r,/) and (g,c). In the next section
we will use these parameters to derive lumped-circuit models of the line. A three-phase line consists of
multiple wires and therefore we need to derive the series inductance / and shunt capacitance ¢ due to
currents and charges in multiple wires. The key property that will be important in our derivation is that the
set of wires carry currents in both directions so that the currents and charges in all the wires sum to zero
at all times, as expressed in (2.2) and (2.5) below.

59
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2.1.1 Series resistance r and shunt conductance g

The direct current (dc) resistance of a conductor is

pr
Fde ‘= — Q/m
dc A /
where pr is called the conductor resistivity at temperature 7 and A is the cross-sectional area of the
conductor. Hence the per-meter resistance is inversely proportional to the size of the line. The alternating

current (ac) resistance (or effective resistance) of a conductor is defined to be

Ploss
Fac = |IT£ Q/m

where Ploss is the real power loss in W and |/] is the root-mean-square of the current in A in the conductor.
The current distributes uniformly throughout the conductor’s cross-sectional area for dc. For ac, the current
density is lower at the conductor center and higher near the conductor surface. This is called the skin
effect and is more pronounced at higher ac frequencies. As frequency increases, the real power loss, and
hence the ac resistance, also increase. At 60 Hz the ac resistance is at most a few percent higher than dc
resistance. These effects are modeled by the series resistance r in Q/m in transmission line models.

Shunt conductance g in Q! /m accounts for real power loss between conductors or between conduc-
tors and ground, typically due to either leakage currents at insulators or to corona. Insulator loss depends
on the environment such as moisture level. Corona occurs when a strong electric field at a conductor
surface ionizes the air, causing it to conduct. It depends on meteorological conditions such as rain. Losses
due to insulator leakage and corona are typically negligible compared to resistance loss |/ ]2. It is therefore
common to assume zero shunt conductance g in transmission line models.

2.1.2 Series inductance /

Roughly, the per-meter series inductance / in henrys/m of a wire is the proportionality constant between
the current i in a meter of the wire and the total magnetic flux linkages 4, i.e., A(t) = li(¢), where i(¢) is
in ampere and A is in webers. We now study how the per-meter series inductance [ of a wire depends on
the geometry of the transmission lines.

Single conductor. Consider a straight infinitely long wire of radius » with uniform current density in the
wire with a total current i (dropping ¢ from the notation for simplicity). The total flux linkages Ag per
meter of the wire within a radius R of the wire is related to the current i and the geometry by:

Mo (B RY
Ak = 27r<4+1nr>l

where g := 471 x 1077 weber/ampere-meter is the permeability of free space, and u, is the relative per-
meability of the wire. If the conductor is nonmagnetic (e.g. copper or aluminum), then u, ~ 1. The first
term is due to flux linkages inside the wire and the second term is due to flux linkages outside the wire up
to radius R. The details are explained in [1, pp.54-59].
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Multiple conductors. We will calculate approximately the per-meter total flux linkages A; of conductor 1
that carries a current ;. The total flux linkages A; is determined not only by current i, but also by currents
ir from other conductors k = 2,...,n, that carry currents i; and are at distances di; from the center of
conductor 1. See Figure 2.1.

f
Y
@

@ >
conductor 1 R]
radius 7, —

current i,

Figure 2.1: Per-meter total flux linkages in a volume within a radius R; from the center of conductor 1
due to all conductors. Conductors k carry currents i, and their centers are distances dy; from the center of
conductor 1 and R from point a.

Denote by R the distance of point a from the origin (center of conductor 1) and by R; the distance of
the center of conductor k from point a. Then the total flux linkages of conductor 1 is

. Ho . W
M o= 1 — In— In— 2.1
1 Rllgloozyr< (4jL )+Zlkn ) —
where In denotes the natural log. We make the key assumption
n
Z = at all times ¢ 2.2)

This is a reasonable assumption as in practice the lines carrying power from generation to load and the
lines carrying the return currents follow the same physical path by design. The implication is that the
magnetic inductances due to all the lines cancel each other at infinity. Formally, we add —InR; Y}, ix
into the bracket on the right-hand side of (2.1) to get

. o . [ 1 Uo o . . R
M o= 1 L) In— 1 L) In =%
1 l1m ( ( +nrl)+§ irIn k) + E I In 1
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As Ry — oo, In(R;/R;) — 0. Hence
Mo | . 1 ’ 1
A = = In— In —

where r| := rie~#/* is the radius of an equivalent hollow conductor with the same flux linkages as the
solid conductor of radius r. For a nonmagnetic wire, i1, ~ 1 and | ~ 0.78r.

In general the total flux linkages A; of conductor k depends not only on current i; but currents iy in
other conductors as well, and is given by

A = <5_;lnrlz’<> T kék (;‘—gln ﬁ) iy 2.3)
where r| 1= rke*”"/ 4. In vector form this is
A = Li
where A := (A, k=1,...,n),i:= (ir,i = 1,...,n), and the (k,k’)-th entry of the n X n matrix L is

Bnd if k=K
hw = w8 )
ﬁhl% if k 75 k

The voltage drop vy () between two points on conductor k that are separated by an infinitesimal distance
is related to the rate of change of the total flux linkages A (¢) (Faraday’s law), i.e.,

d d .
v(t) = Elk(f) = Zlkk’alk’(ﬂ
k/

This relation, in the phasor domain, is used in Chapter 2.2.1 to derive a circuit model of a transmission
line. In a circuit model, the term

1
e = — In— henrys/m

is called the self-inductance per meter of conductor k and the term

1
Hoy 2

o M henrys/m

ik

is called the mutual inductances per meter between conductors k and k’. The larger the conductor r; the
smaller the self-inductance /.

2.1.3 Shunt capacitance ¢

Roughly, the per-meter shunt capacitance c, in farads/m, of a wire is the proportionality constant between
the charge ¢, in coulombs/m, in a meter of the wire and the voltage v on the surface of the wire, i.e.,
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q(t) = cv(t). We now study how the per-meter shunt capacitance c of a wire depends on the geometry of
the transmission lines.

Consider the situation in Figure 2.1 with multiple conductors. A similar analysis to that in Chapter
2.1.2 shows that the voltage, with respect to a reference at infinity, at a point on the surface of conductor k
is

1 1 1 1
— (- ] , 2.4
vk <27T8 . I’k) T+ Z <27l'8 . dkk’) U 24

Kk

where € is the permittivity of the medium (¢ = 8.854 x 10~!2 farads/meter in free space and € ~ 1
farad/meter in dry air). As before, r; is the radius of conductor k and dj; is the distance between the
centers of conductors k and kK. Here g is the total charge per unit length of wire k in coulombs/m. In
vector form this is

v = Fgq

where v:= (vi,k=1,...,n), ¢ := (qx,k = 1,...,n), and the (k,k’)-th entry of the n X n matrix F is

Lal
S = {Zjlmhlr_kl i k=K
= E ,
lndkk/ if k#k

2me
Taking time derivatives relates the currents in the conductors to the rate of change in a voltage on the
surface of the conductor relative to the reference, v = Fi(t). Let C := F~!. The diagonal entries ¢y of
C are called self-capacitances per meter of conductor k and the off-diagonal entries c; of C are called
mutual capacitances per meter between conductors k and k', in farads/m. The larger the conductor ry the
larger the self-capacitance cyy.

The key assumption (among others) in deriving (2.4) is
n
Y a) = 0 at all times 7 (2.5)
k=1

Compare this assumption with the assumption (2.2), and the expressions (2.3) and (2.4).

Example 2.1. The voltage v, in (2.4) is the potential, or voltage with respect to the reference at infinity,
at a point on the surface of conductor k. The voltage difference v j; between two points on the surfaces of
two parallel conductors j and & that are on a plane perpendicular to conductor j is:

2.1.4 Balanced three-phase line

Consider the simplest model of a symmetric three-phase transmission line in balanced operation, as shown
in Figure 2.2, with the assumptions:
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1. the conductors are equally spaced at D and have equal radii r;!
2. ig(t)+ip(1) +ic(r) = O at all times £;

3. qa(t) +qp(t) +qc(t) =0 at all times ¢.

Figure 2.2: Per-meter inductance and capacitance of a symmetric three-phase transmission line in balanced
operation.

It can be shown (see Exercise 2.1) that in this symmetric arrangement the effect of mutual inductances and
capacitances among the transmission lines is particularly simple, resulting in the following equal per-phase
inductance for each line:

Ho

D
| = — In— H/
2 nr/ m

where 1/ := re /4, and equal per-phase capacitance for each line:

2we
= — F/
In(D/r) .
Note that / and ¢ include not only the self-inductance and self-capacitance of the line, but also mutual
inductances and capacitances. Two implications are as follows.

1. Although there is magnetic coupling between phases, the conditions i, (¢) + i,(¢) +i.(t) =0, ga(t) +
q»(t) +qc(t) = 0 and the symmetry (equal radii r and distances D) reduce the effect of the magnetic
coupling to the term InD. This allows us to model the magnetic effect as if it consists of only self-
inductance and electric effect as if it consists of only self-capacitance. Moreover, the inductances
and capacitances are equal for each phase, permitting per-phase analysis.

2. To reduce the impedance per meter due to inductance or capacitance, we can reduce the spacing
D or increase the wire radius r. Both have limitations. Other techniques are used in practice to
approximate condition 1 above on the symmetry of line geometry, e.g., conductor bundling and
transposition of the transmission lines.

"'We use r to denote both the per-meter series resistance and the radius of the conductor; the meaning should be clear from
the context.
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Consider any point p that is equidistant from the centers of the conductors a, b, c, e.g., the point at the
center of the triangle in Figure 2.2. The potential, or the voltage relative to the reference point at infinity,
at this point p can be shown to be

1 1 1 1
= — In— In— In— 2.6

where d),, = d,;, = d). are the distances between p and the centers of the conductors. Since g, + g, +
gc = 0 we have v, = 0, and hence p has the same potential as the reference point at infinity and can
therefore be taken as the reference point. We will construct an imaginary geometric line parallel to the
conductors pass through the equidistance point from these conductors. Every point on this line is the
reference potential. By default we will pick this as the neutral potential that defines the phase-to-neutral
voltages. The current supplied to the transmission line capacitance is called the charging current and the
corresponding capacitance is also called the line charging. Figure 2.3 shows the corresponding circuit
model of a transmission line. When the phase a line-to-neutral voltage is V,;, the phase a charging current

a
(0]

—— ¢ F/m to neutral

c
Figure 2.3: Circuit model of the cross section of a balanced three-phase transmission line.
is
Ia.,charging = 10cVy, A/m

from phase a conductor to neutral.

2.2 Line models

Consider a three-phase transmission line in balanced operation in sinusoidal steady state, modeled as in
Figure 2.3. A key conclusion of Chapter 2.1.4 is that for balanced three-phase lines, we can analyze each
phase separately. Consider now a transmission line on one of the phases. Let

series impedance per meter z = r-+iw/ Q/m
shunt admittance per meter to neutral y := g+iwc Q! /m
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where the per-meter resistance r > 0 and conductance g > 0 depend on the material and size of the line,
and the per-meter inductance / > 0 and parameter ¢ > 0 of the line can be calculated as in Chapters 2.1.2—
2.1.4. In this section we derive two equivalent models of a balanced three-phase transmission line. The
first model represents the terminal behavior, i.e., the mapping of the voltage and current between one end
of the line and those at the other end, by a transmission matrix in (2.9) below. The second model represents
the terminal behavior of the line by a linear circuit with series impedance and shunt admittances given in
(2.14) below.

2.2.1 Transmission matrix

Distributed-element model. We start by deriving the V-1 relations between two ends of a transmission line.
Figure 2.4 shows a per-phase model of a balanced three-phase line of length ¢. The voltages are phase
(line-to-neutral) voltages as illustrated in Figure 2.3. We will call the left end the sending end and the right
end the receiving end. When we apply a voltage Vi, with respect to neutral, at the sending end driving a
current /1 towards the receiving end, the voltage drops and the current leaks from the sending end to the
receiving end so that the voltage V(x) and current /(x) at each point x of the line vary. We will derive a
relation between the sending end (V;,1;) and the receiving end (Va, ) by solving for (V(x),1(x)) in terms
of (Vo,hp) forall 0 < x < /.

1, zdx _qx)
o> W P—+ + +—>—0
+ + + +

dl
V. V(x)+dV y dx V(x) 4
o . _ o
dx X
/

Figure 2.4: Per-phase model of a balanced three-phase line of length ¢ with impedance parameters z, y.

To this end consider the infinitesimal segment of length dx at a distance x from the receiving end.
This segment is modeled by the circuit with series impedance zdx and shunt admittance ydx to neutral as
shown in Figure 2.4. Let the voltage and current at point x be V := V(x) and I := I(x) respectively. Let
the corresponding quantities at point x + dx be V (x) +dV and I(x) +dI. Applying Kirchhoff’s laws to the
segment, we have

dv = z(x)dx
dl = (V(x)+dV)ydx = yV(x)dx
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where the approximation results from ignoring the second-order term dVdx. Hence we have
‘ZI_‘; _ 0 z||V @7
dr y 0] |1 ’
dx

Transmission matrix. The ordinary differential equation (2.7) can be easily solved using standard
method (see below for details), and the general solution is:

Vix)| e 0 ki
) - olo S o
for some constants kj, k,, where
1z —Z 1 1 Z
U = {1 1 } and U™ := 7 |-1 z (2.8b)
Here
Z. = < Qm™! and Y =2y m~! (2.8¢)
y

are called the characteristic impedance and propagation constant of the line respectively. Atx =0,V (0) =
V5 and 1(0) = I. From (2.8) we have

V2 ki

] - ol

V(x) . e”™ 0 ki| e™ 0 11V
{I(x)] =V [ 0 e”x] {kz =U 0 e ™ v b
The sending-end voltage and current are therefore related to the receiving-end (V»,1) as

V] . €Y€ 0 —1 VZ
) =[5 Sl

W] = [rmn, o] ()

and hence

Expanding, we have

where coshx := (¢* 4 ¢7¥)/2 and sinhx := (¢* —e™)/2. This defines a linear mapping that maps the
voltage and current (V3,1,) at the receiving end to the voltage and current (V},1;) at the sending end. The
matrix in (2.9) is called a transmission matrix.

The ratio V; /1 at the sending end is called the driving-point impedance. It is the equivalent impedance
across the two sending-end terminals.
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Example 2.2 (Driving-point impedance). Consider the terminal model (2.9) of a transmission line. Sup-
pose the receiving end is connected to an impedance load Z;. Show that the driving-point impedance V; /1
is equal to the characteristic impedance Z. of the line under one of the following conditions:

« if the load is matched to the line, i.e., Z; = Z.; or
* if the line length ¢ grows to infinity, since the line parameters satisfy r,x,g,c > 0.
The second condition implies that as the line grows in length its impedance comes to dominate the load
impedance Z;.
Solution. Since V, = Z;I,, we have from (2.9) that when Z; = Z,.
i 7 cosh(y¢) + sinh(y¢)

= c . = Z
I sinh(y¢) + cosh(y¢)
For the second case, we have from (2.9)
i p Zjcosh(yl) +Z.sinh(yl)  _ Z;+Z tanh(y?)
I " Zsinh(yf) +Z.cosh(yf) T Ztanh(yl) + Z.

Now y=,/zy =: /7 where 7 := (rg — @*lc) +io(rc + gl). Note that Im§ > 0 and hence /7 € (0,7) and
y € (0,7/2). If we write ¥ =: ot +if3 then o > 0. Hence

cosh(yl) = %(ew_yeﬂ) = %(e(a+iﬁ)4+e(a+iﬁ)€>
1 1 . .
i — (Vv — ([ latiB)l _ —(a+iB)l

sinh(y?) 5 (e e ) 5 (e e )

and
elaHiB)l _ ,—(a+ip)l 1 — e—2(a+iB)e
tanh(() OBl 1 p—(@+iP)l | e 2atip)l — 1 as e

Hence V| /I} — Z. as { — oo. ]

Example 2.3 (Matched load). Suppose the line is terminated in its characteristic impedance Z, i.e., V2 =
Z.I>. Then (2.9) yields

Vi = (cosh(yf)+sinh(y0))V, = Ve

I, = (cosh(yf)+sinh(yt) L, = hLe"
Therefore the driving-point impedance V; /1 is also the characteristic impedance Z. of the line. Moreover
the ratio of the receiving to sending end voltages and currents are

|2 )

= — g_ﬂ
Vi L

The ratio of the receiving power to the sending power is:

—S WI; *
-
S12 Vil
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Writing y = /2y = /(rg — @2lc) +io(rc+gl) =: o +if, we have

—Su 2w
S12

Since e 2% is real, the powers have the same phase angle Z(—81) = 4812 =: 6. This implies that the

transmission efficiency has the same ratio in terms of real power — P received and real power Pj, sent:

—P21 . —S21 cos 0 . e_z(xg
P]2 SlchSG

Hence for an impedance load that is matched to the line impedance Z., the transmission efficiency n
decreases exponential in the line length ¢. For high-voltage transmission lines, & = 0 so the loss is small
and n ~ 1.

Indeed, for a lossless line, r = g = 0. Then z =iw/ and y = i®wc. Hence

\/E 110 /L
ZC = - = _ = J—
y cl C

is real, where L is the total inductance of the line and C the total capacitance of the line, and

y = Vo = ioVic
is purely imaginary (o = 0). The transmission efficiency is n = —P»; /P = 1. We will study lossless
lines in more detail in Chapter 2.2.4. [

Solution of (2.7). First we note that even though (V,I) and the parameters (y,z) are complex variables,
the variable x (distance from terminal 2) is a real variable. Hence the ordinary differential equation (ode)
(2.7) can be solved in the same way as an ode in the real domain. To see this consider a general ode:

dz
;= — = M 2.10
. dt ¢ ( )

where z:=x+ jy € C" withx,yin R" and M := A+ jB € C"" with A, B in R"*", with the interpretation
x+ jy=(A+ jB)(x+ jy). Rewrite this in the real domain:

X A —B| |x
H B {B A] H 1D
W—/
M
Two matrices
. ~ |A —B
M = A+ jB and M—{B A}

are equivalent, written M <> M, in the sense that for any z = x+iy with x,y € R",

s = 1)

Im(Mz) y
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Since

A’ B> —(AB+BA)

2 (A2_p2 . 72 _
M* = (A°—B’) + j(AB+BA) and M AB+BA AR

we have M? <+ M?, and by induction M* <> M* for all k. Hence e” « ¢M. This implies that a trajectory
z(t) € C" is a solution of (2.10) if and only if (x(z),y(¢)) € R?* with z(t) =: x(t) +iy(t) is a solution of
(2.11). Hence solving (2.11) using M in the real domain is equivalent to solving (2.10) using M directly
in the complex domain.

We now solve the ode (2.7). Let

-

Then the eigenvalues of A are -y where y:= ,/yz is the propagation constant defined in (2.8¢). Recall the

characteristic impedance of the line Z; := \/% also defined in (2.8c). The corresponding eigenvectors are

(any vectors proportional to) the columns of the matrix U defined in (2.8b). Let U ~1 be its inverse. Since
AU = Udiag(y,—7), if we define

[\;(x)] R [V(X)] (2.12)

then
1) = o] onli] - (o L) - o

i.e., VandT are decoupled. Hence
V(x) = kie™ and I(x) = kpe ™

for some constants k,k>. Then (2.12) implies that the general solution of (2.7) is (2.8). ]

2.2.2 Lumped-element II-circuit model

If we are only interested in the terminal voltages and currents of a line, then we can represent the line by a
lumped-circuit model as shown in Figure 2.5 that consists of a series impedance Z’ and a shunt admittance
Y'/2 at each end of the line. This is called the II model or I1-circuit model of a transmission line. We now
derive the parameters (Z',Y’) in the IT model in terms of line characteristics (Z,, ).

Applying Kirchhoff’s laws we have

Y’ Y’
L = —Vi+—W+I1
1 ) 1+2 2+1D

Y/
Vi—-V, = VA (7V2—|—12)
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I A i
1 2
o— VWA »—o
+ +
v 1
— - V.
oo T7 "
o i

Figure 2.5: Lumped-circuit IT model of a transmission line.

Hence
il 1+Z’Y’/2 VA Vs (2.13)
L|  |Y(+ZY'/4) 1+Z2'Y')2| | ’
Comparing (2.13) and (2.9) we find that the IT model in Figure 2.5 is given by:
inh
7 = Z.sinh(y0) = \/gsinh(}/ﬁ) -z éﬂ) (2.14a)
Yy
Y’ 1 cosh(y)—1 _ 1 sinh(y//2) _ Y tanh(y(/2) (2.14b)
2 Z. sinh(yf)  Z.cosh(y/2) 2 yt)2 ’

where Z := z/ is the total series impedance of the line and Y := y/ is the total shunt admittance to neutral
of the line.

When |y¢| < 1 then sinh(y¢)/(y¢) ~ 1 and tanh(y¢/2)/(y¢/2) ~ 1, in which case the IT model in
Figure 2.5 can be approximated by the total series impedance Z and total shunt admittance Y to neutral of
the line.

In summary each phase of a balanced three-phase transmission line can be modeled as follows:

e Long line ({ > 150 miles approximately): Use either (2.9) or the IT circuit model with Z’' and Y’
given by (2.14).

* Medium line (50 < £ < 150 miles approximately): Use the IT circuit model with Z :=z/ and Y := y/
instead of Z' and Y’. Here Z = R+i®L is the total series impedance of the line and Y = iwC is the
total shunt admittance to neutral of the line. In particular, for medium lines, the shunt resistance is
negligible.

* short line (¢ < 50 miles approximately): Use the IT circuit model with Z only and neglect Y.
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2.2.3 Real and reactive line losses

The power injected at terminal 1 towards terminal 2 and that at terminals 2 towards 1 are (from Kirchhoff’s

laws):
H H
S o= vl = (L Vil —wvi v vi|?
o= Wl o= | (ViIF=wivy') + > V1
1 H Y/ H
Sy = VZ(—IQ)H — <Z) (|V2’2_V2V1H) + <E> ‘V2|2

They are not negatives of each other because of power loss along the line. Indeed the total complex power
loss is their sum:

/

1\ 2 YN 2 s |12 YN 2
S48 = <?) Vi—Va|” + (;) (ViP+Wal?) = Z'|K,* + (E) (V1> + W)
where I}, denotes the current through the series impedance Z’. The first term on the right-hand side is
loss due to series impedance and the last term are losses due to shunt admittances of the line. Suppose
7' = R® +iX* and the shunt admittance is purely capacitive, i.e., Y’ = iB™ with R®, X*, B™ > 0. Then, over
the transmission line,

real power loss Re (S12+S521) = Rs|1f2]2

Bm
reactive power loss Im (S;p +821) = X°|I5,)? — 7(|V1|2+|V2]2)

Remark 2.1 (High voltage reduces line loss). Consider a load supplied by a source through a transmission
line modeled by a series impedance R +iX and zero shunt admittances. Suppose the load draws an active
power Poaq With power factor cos ¢ at a specified voltage magnitude |Vjoaq|. It can be shown that, given a
desired active load power P,q, the active line loss Fj,e is inversely proportional to the square of the load
voltage magnitude |V,| and its power factor cos ¢ (Exercise 2.7):

2
P]oad

ine = Rlhoaa|? = R—3
Fline | 10ad| |V2‘2 C082¢

Therefore a higher voltage (magnitude) reduces line loss.

Note that the higher voltage refers to the voltage |V»| across the load (and eventually the source voltage
[Vi]), not the voltage across the transmission line which is |V} — V,|; see Figure 2.5. It is derived in
Example 1.8 that, given a desired load power, the active line loss is inversely proportional to the load
voltage magnitude |V5|, rather than |V5|2. This is because, in Exercise 2.7, the line resistance R is given
and independent of load power and voltage |V, |, whereas, in Example 1.8, the line resistance R is chosen
to be proportional to |V | (reducing the dependence of line loss R|[jpaq|* from [V5|? to [V5)). O

2.2.4 Lossless line

In this subsection we look at some properties of a lossless line, i.e., when r = g = 0. A lossless line is an
important model because a high-voltage transmission line typically has very small power loss compared
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with the power flow on the line, and can be modeled as a lossless line. As noted above we have

z - i@l
y 10c c
y = Vo = (ol)(ioc) = ioVic = i m!

with B := wv/Ic. Therefore the characteristic impedance Z,. is purely resistive while the propagation
constant Y is purely reactive. The characteristic impedance Z,. is called a surge impedance for a lossless
line. This implies

cosh(yx) = cos(Bx) and sinh(yx) = isin(Bx)

II-circuit model. Substituting Z. and 7y into (2.9) the transmission matrix reduces to

o) = LTy ey | 2] = iz sy st | ) 219

for x € [0,/]. The circuit elements Z’ and Y’ in the IT circuit model of a transmission line reduces to (from
(2.14)):

7' = Zcsinh(yl) = iZsin(Bl) =: iX Q (2.16a)
Y’ Ytanh(y//2)  Ytan(B¢/2) = oC
> = 3 —’)/f/z = 5 —[35/2 =t i— Q (2.16b)

where Y :=iwcl and C' := ¢l (tan(B¢/2)/(B£/2)). If £ is small then C’' = c¢f. When B¢ < & radian, both
Z' >0and Y’ >0, i.e., the series impedance is purely inductive and the shunt admittances are purely
capacitive. In practice, for overhead lines, 1/ Vie~3x 108 ms~!. At 60 Hz (using B := wV/lc)

4 T

-~ = —— ~ 2,500km

B 27(60)v/Ic
Hence a lossless overhead transmission line less than 2,500 km can be modeled by the simple circuit in
Figure 2.6 where X and C’ are given in (2.16). It is a model for either a single-phase line or the phase-to-

I, X I,
o> 0 » O
+ +

wC | 1
v T T2 V2
o o

Figure 2.6: I circuit model for a lossless line with length ¢ < 7 /f3.

neutral of a balanced three-phase line.
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Voltage profile. Usually power must be delivered to a load at a specified nominal voltage magnitude
|V | at the load. To see how the voltage magnitude changes along a line from the source x = ¢ to the load
x =0, we determine the voltage V (x) for x € [0, /] using (2.15):

V(x) = Vpcos(Bx) + iZ.I, sin(Bx) (2.17)

Suppose the line terminates at an impedance load Zjoaq := Rjoad + iXjoaq- Then the voltage V(x) at each
point x depends on the load impedance because V>, = Zjy,q/2. There are four cases of load impedance:

1. No load I, = 0: V(x) =V, cos(Px) is real. Hence the voltage magnitude V(x) increases from the

source at x = £ to the end of the line at x = 0 as long as B¢ < /2 radian.

2. Surge impedance load Zjoaq = Z.: The voltage magnitude |V (x)| is constant. Moreover the power
delivered S(x) at every point x € [0, /] is real and constant |V3|?/Z,, so only real power is delivered.
See Exercise 2.4.

3. Full load: Since I = V3 /Zj5aq We have

V@) = (cos(ﬁx) + izicad sin(ﬁx)) v,
.Zchoad

Zchoad .
= cos(bx)+ sin(px) +1
( (ﬁ ) ’Zload‘2 (B ) ‘Zload|2

sin(ﬁx)) Vs (2.18)

In Exercise 2.5 we derive for special cases sufficient conditions under which the voltage magnitude
|V (x)| decreases from the source at x = ¢ to the load Zjpaq at x = 0.

4. Short circuit Vo = 0: V(x) =iZ.I, sin(Bx). Hence the voltage magnitude |V (x)| decreases from the
source at x = ¢ to the load at x = 0 as long as ¢ < /2 radian.

This is illustrated in Figure 2.7. The general trend of decreasing voltage magnitude towards the load (case
3 above) can be problematic because loads are generally designed to work with specific voltages. As
mentioned above low load voltage also increases line loss in the network. Voltages are regulated tightly
around their nominal values through various voltage compensation devices in generating units and inside
the network.

Example 2.4 (Steady-state stability limit). To derive the power delivered to a generic load we have from
(2.16) that

Vi—W .oC !
L = — %
2 ix 27
Hence the complex power delivered is
. W2=wV el 5
21 2(1) ( ix = Val

and the real power delivered is

ViV
A ILEIN
X
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V0l

No load I, = 0

SIL Zload = ZC

Full load

Short circuit V, =0
x=4 x=0

Figure 2.7: Voltage magnitude |V (x)| on a lossless line.

where 6 := /V| — /V, is the angle difference between V| and V,. Hence the maximum power is delivered
on a lossless line if 6 = /2 and the maximum power would have been |V;||V»|/X. This § = 7/2 is called
the steady-state stability limit. If the load exceeds this limit, there is no solution for & for this equation. In
practice a transmission network operates with 6 < /2 because a line is typically limited by three other
factors. First the voltage drop from the source to the load must be small, e.g., |V2|/|Vi| > 95%. Second &
is usually limited to 30° or 35° by transient stability. Third d can be limited by the thermal rating of the
conductor insulation materials. ]

2.2.5 Short line

Consider a three-phase transmission line connecting two buses in balanced operation so we can analyze
each phase separately. Assume the line is short and can be modeled by a IT equivalent circuit with only
a series impedance Z = R+ 1X and no shunt admittances. We explain some properties of complex power
transfer over this line.

Let V; and I; be the voltages and currents at buses i = 1,2. Let S;;, i,j = 1,2, be the sending-end
complex power from bus i to bus j, i # j, and /;; be the complex current from bus i to bus j. Then

z* zZ*
If the voltage magnitudes |V;|, i = 1,2, are fixed, the branch powers depend only on the power angle
9,' j = 9,' -0 jI

Sij = Vili*j =V |Vi’2_ViVj*) (2.19)

1 0
Si = 5 (V2= Villvile?®)
Taking the sum of the branch powers in (2.19), the complex loss over the line is

Vi — Va2

= Z|I;5|?
~ 12|

Sp+81 =
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where I} is the current from buses 1 to 2. In particular the real power loss is Pi + P»; = R|I 12]2.

Nose curve and voltage collapse. Suppose bus 1 has a generator with a fixed V; := |V |£0° supplying a
load at bus 2 through a line with impedance Z. Let the power supplied to the load be —S>; = |S21|(cos ¢ +
ising) =: P(1 +itan¢) where P > 0 is the active load power and ¢ is the power factor angle. The power
flow equation (2.19) hence becomes

1 .
P(1+itang) = —— (yv2|2 A |V1|e'921) (2.20)

where 6, := £V, — LV = £V,. Voltage support is typically available on the generator side, so we assume
|Vi| is fixed even when the load power varies.> Voltage support may not be available on the load side
and we are interested in the behavior of the load voltage |V,| as the active load power P increases while
keeping the power factor angle ¢ constant.

Fix V| and ¢. For each P, (2.20) defines two real equations in two variables |V,| and 6,;. For this
simple system we can analytically solve for |V;| for each P. Depending on the value of P, there may be
zero, one, or two solutions for |[V|. As P varies, the solutions |V,| trace out a curve called a nose curve.
As P increases from zero with fixed power factor angle ¢, there are exactly two solutions for |V,|, one
with a high voltage and the other with a low voltage. The difference between the high-voltage solution
and the low-voltage solution of |V,| decreases until they coincide. This is the point where the active load
power P = Pp,x is maximum and represents the limit of power transfer from the voltage source V; through
the transmission line Z to the load. If P increases further, real solutions for |V,| cease to exist. This
phenomenon is called voltage collapse. This is studied in Exercise 2.9. See Chapter ?? for discussions on
voltage collapse beyond the infinite bus model.

Short and lossless line R = 0. Suppose the series resistance is negligible (which is a reasonable approx-
imation for high voltage transmission lines), Z = iX. Then (2.19) reduces to

Sij = (|Vi’2—ViV;)

1
l_

X
Hence

V1| V-

1
Op = e (Vi[> = [Vi|[V2| cos 12)
1
On = ¢ ([Va|* = [V1]|V2| cos 612)
where 0y, := £/V| — /V,. This has the following implications.

1. Transmission efficiency. The transmission efficiency 1 := —P»; /P = 1 since there is zero real
power loss. The maximum power transfer |V}||V,|/X is proportional to voltage magnitude product.
This is another reason why transmission networks tend to operate at very high voltage levels. Indeed
doubling the voltage increases the maximum power transfer capability by fourfold.

2 An ideal voltage source whose complex bus voltage is fixed regardless of its power generation is called an infinite bus.
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2. DC power flow model. When voltage magnitudes are fixed, the real power depends only on the
power angle 6;2. When the power angle is small |6;3| ~ 0, sin8;2 ~ 0, and the real powers P;;
are roughly linear in the phase angles (60,6;). These assumptions are called the DC power flow
approximation (R = 0, fixed |V;|, small |6;;|, ignore Q;;); see Chapter ?? for more details.

3. Decoupling. When |61;| = 0, there is a decoupling between real and reactive powers:

P dPy  [Vi|]Va Vi[Val
— = — = coslp ~ ————
dPp, 0P \4]
— = ——— = —— sin 912 ~ 0
Vil Vil X
Hence the real powers P;; depend strongly on 6, but not on the voltage magnitudes |V|.
On the other hand
90ij _ [VilVal
= inf;; ~ 0
8912 X S oip

i.e., the reactive powers Q;; depend weakly on the power angle 0. Moreover

5Q12 “1’ 6Q21 1
= ——lcosBp <0 = - (2[V2| =1V 6
o|V»| x o ’ o|Vs| X( [Val = [Vi]cos 6i2)

Typically |V}| = |V,| and hence the second expression above is positive. Hence to maintain a high
load voltage |V,|, we should increase Q»; and/or decrease Qj», i.e., the load should supply reactive
power and the generation should absorb reactive power. This motivates the use of reactive power to
regulate voltage magnitudes. The decoupling property holds in a network setting as well and leads
to a fast algorithm to solve power flow problems; see Chapter 4.4.3.

4. Out-of-step generators. When generators are not synchronized, i.e., they operate with slightly dif-
ferent frequencies, the long-run average active power transmitted across a lossless line is zero. To
see this, consider voltages at buses 1 and 2 given by

vi(t) = V2|Vi|cos(w't+ 6))
Vz(l‘) = \/5‘V2’COS((DZ‘+ 92)

where the frequency @' at bus 1 is slightly out of step, with @’ ~ . Write
vi(t) = V2|Vi|cos(ot+6](1))

with a slowly-varying phase 6] (t) := 6; + (@’ — w)z. If the phase 6{(¢) varies slowly enough, we
can still use the steady-state expressions above as reasonable approximations of powers. Then the
short-term active power is given by (from (2.21)):

V1||V;
Py, = | 1}! ] sin (0" — ®)t + 612)

Hence the long-term average of active power transfer is zero. This is not only ineffective, but highly
undesirable because the line current can be very large. In practice protective devices would remove
the out-of-step generator.
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2.3 Bibliographical notes

There are many excellent textbooks on basic power system concepts and many materials in this chapter
follow [1]; see also [2, Chapter 4]. We develop line characteristics in Chapter 2.1 based on basic results in
physics that we do not elaborate. For example, the derivation of shunt capacitance c of a transmission line
in Chapter 2.1.3 is explained in [1, Chapters 3.7-3.8] or [2, Chapters 4.8—4.12]). The expression (2.6) for
the potential v, at the center of a balanced three-phase transmission line is from [1, Example 3.8, p. 79].
Some of the materials on lossless lines follow [2].

2.4 Problems

Chapter 2.1.

Exercise 2.1. Consider the simplest model of a symmetric three-phase transmission line in balanced op-
eration, as shown in Figure 2.8, with the assumptions

* the conductors are equally spaced at D and have equal radii r;
o iy(t)+ip(t) +ic(t) = 0 at all times ¢;
* q4(t) +qp(t) +q-(tr) =0 at all times 7.

where i (¢) are currents and gy are the total charge per unit length of wire k in coulombs/meter. Show that

D

Figure 2.8: Per-meter inductance and capacitance of a symmetric three-phase transmission line in balanced
operation.

the per-phase inductance per meter of the three-phase transmission line is

;o= B nam)
2

where 7/ := re~*/*, and the per-phase capacitance per meter is
2rme
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Chapter 2.2.

Exercise 2.2. Consider the per-phase transmission line model described by (2.9). We are to determine the
line characteristic impedance Z, and propagation constant y¢ from two measurements:

1. Open-circuit test. The load side is open-circuited so that /, = 0 and the driving-point impedance is
measured as

Vi

Zoe = I

2. Short-circuit test. The load side is short-circuited so that V, = 0 and the driving-point impedance
is measured as
Vi

ZC ¢ = Il

Derive Z. and Y/ in terms of Z,. and Z,. (sign ambiguity is fine).

Exercise 2.3 (Lumped-circuit IT model). Consider a general transmission matrix 7" that maps the receiving-
end voltage and current (V3,5) to those (V},1;) at the sending-end:

) - B

1. Show that the transmission matrix 7 in (2.9) has the property ad — bc = 1.

2. Suppose b # 0in T. Show that the condition ad — bc = 1 is necessary and sufficient for interpreting
the transmission matrix 7 as a Il equivalent circuit consisting of a series impedance Z # 0 and shunt
admittances (line charging) Y; and Y, at the sending and receiving ends respectively (note that Y;
may not necessarily equal 13).

Exercise 2.4 (Surge impedance load (SIL) on lossless line.). Consider a lossless line with r = g = 0 that
terminates in an impedance load that is equal to the characteristic (surge) impedance Zjoog = Z, = \/1/7 Q
of the line. The power delivered by a lossless line to the resistive load Z. is called the surge impedance
loading (SIL).

1. Show that the voltage magnitude |V (x)| is constant over x € [0, /].

2. Calculate SIL.
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Exercise 2.5 (Voltage drop along lossless line). We have derived in Chapter 2.2.4 the voltage V (x) at each
point x € [0,/] along a lossless line terminating at an impedance load Zjoy,g = Rjoad + iXjoad to be (from
(2.18)):

Z:X Z:R
V(ix) = (cos(ﬁx) + Lm“;sin(ﬁx) + i%sin(ﬁx)) Vs
|Zload | |Zload ‘
Assume 3¢ < /4. Prove the following:
1. If the load is purely resistive Zjpag = Rioad then |V (x)] is an increasing function for all x € [0, /] (i.e.,

the voltage magnitude |V (x)| drops from the source at x = £ to the load Zo,q at x = 0) if and only if
Rload <Z.

2. If the load is purely inductive Zjgaq = iXjoaq With Xjoaq > O then |V (x)| is an increasing function for
all x € [0,/] if and only if

sin(23¢)
< _\EFr)
Xioad < 1 —cos(2B¢) ¢

3. If Zioad = Rioad(1 +1) then |V (x)| is an increasing function for all x € [0,¢] if and only if

-1
1
Rload < ( l+m — COt(2ﬁ£)> ZC

Exercise 2.6 (Voltage, reactive power compensation). Consider a generator with voltage and power in-
jection (V;,s;) supplying a load with voltage and power injection (V,si) through a transmission line

parametrized by series and shunt admittances (yjik,y?}(, ykmj) Power balance at the load bus k is (with

)’ij = )’;k)

y H 2 H m H 2
se = (%) (IWP=vevf)+ (o1) " v (222)

Let y; ;= g ; +iby, i and yﬁ. =: gkmj +ibz1j and suppose g; i 2 0, by i < 0 (inductive) and g’,?j >0, b’,:’j >
0 (capacitive). Let s =: py +iqy, and V; =: |V;| 1%, i = j, k. Use (2.22) to express the receiving real
power —py and receiving reactive power —g in terms of the voltage magnitudes |V;|,|Vi|, and the angle
difference 6 ; := 6, — 6;.

Suppose ykmj = 0 (zero shunt), g}‘.k =0 (loss line), and 0 < |6;| < /2 (power slow solution stability).

1. Show that real power is delivered to the load (i.e., —p; > 0) if and only if —7/2 < 6;; < 0.

2. The next few questions study the relation between load voltage magnitude |V;| and reactive power
injection g;. Show that:

(a) For DC load (i.e., gx = 0), we must have |Vi| < |V}|, i.e., the load voltage magnitude must be
smaller than the generator voltage magnitude.
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(b) On the other hand, |Vi| = |V;| implies that g; > 0, i.e., the load must inject reactive power to
maintain a high load voltage magnitude.

(c) If —gx > 0 (i.e., the load receives reactive power), then |Vi| < [V;|cos 6; (i.e., load voltage
magnitude will be further suppressed).

3. The power factor angle is ¢ := tan~! (gx/px) and the power factor PF is cos ¢. Show that

Vil

1+ tan¢ktan9kj = |V|CT9k
J J

When [Vi| = |V}| cos 6, what is the PF and is the load receiving or injecting real power?

4. Suppose further that V; := 1£0° and b‘;.k = —1. Suppose that the load voltage magnitude |V;| must
lie between [1 —€,1+¢€].

(a) At unity power (g; = 0), find the maximum received power —p; and the corresponding load
voltage phasor Vj = |V;| €'%. Conclude that the maximum received real power satisfies —p; <
1

5
(b) Show that the maximum received real power is —p; = (1 + €) when the load must inject the
reactive power g, = (1 —¢€)>.

Exercise 2.7 (Voltage, line loss and voltage drop). Consider two buses 1 and 2 connected by a transmission
line modeled by a per-phase I1 circuit model with series impedance Z and shunt admittance (line charging)
Y /2 at each end of the line, as shown in Figure 2.9. Let S, be the sending-end complex power from buses

I, = I
> Z <0
g L= ¥
v Y Y v,
2 2
o— | o
St S

one-line diagram: S12 : : S21
Figure 2.9: Two buses connected by a transmission line.

1 to 2 and S>; be the sending-end complex power from buses 2 to 1 (or, equivalently, —S»; is the receiving-
end complex power at bus 2). Note that the direction of load current I, is opposite to the convention we
used in Chapter 2.2.2.
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1. Calculate the complex line loss as a function of voltages (V;,V,). Can you express the complex line
loss in terms of the load voltage and current (V,, 1) instead?

2. Suppose bus 2 is connected to a load that draws a fixed active power Poaq With a fixed power factor
cos ¢ at a fixed voltage magnitude |V,|. Suppose Z = R +iX and the shunt admittance Y /2 =iB/2
is purely reactive (i.e., zero conductance). Calculate the active power loss P, over the line in terms
of the active load power Pjo,q, the power factor angle ¢, and the load voltage |V5|.

For the following subproblems, assume Y = iB = 0 (short transmission line).

3. Given the fixed active load power P4, show that the active line loss Bj,e derived in part 2 of the
problem is inversely proportional to the squared load voltage |V2]2 and to the squared power factor
2
cos” ¢.

4. Suppose now the load at bus 2 is an electric vehicle that draws an active power of Pp,g = 20 kW with
unity power factor at a voltage magnitude of |V,| = 200V. Calculate the ratio of the active power
loss to the active load power if R = 0.04Q (wires with gauge number 6 at 100ft).

5. What is the magnitude of the voltage drop |V; — V»| across the transmission line (the series impedance
Z), relative to the load voltage V5|, in terms of Z, Paq, |V2|,cos ¢?

Exercise 2.8. Consider the short-line model Sj; = (Z*)f1 (]Vl ]2 -y ) of a transmission line with Z :=

y~1el? that connects bus 1 and bus 2. Let V;, V5 be the complex voltages at buses 1 and 2 respectively and
assume |Vi| = |Va| = 1. Let 05 := £V} — LV,

1. For what value of 0y, is S1, real and nonzero?

2. What is the maximum real power — P that can be received at bus 2 and what is 6}, that delivers it?

Exercise 2.9 (Nose curve and voltage collapse). Consider a voltage source with a fixed magnitude |V
supplying a load through a line modeled by a series impedance z := |z] 1% with |6.| < /2. Let the power
supplied to the load be S> = |S2|(cos ¢ +isin¢) =: P(1 +itan¢) where P > 0 is the active load power and
¢ is the power factor angle. The power flow equation is:

1 .
P(1+itang) = —— (|v2|2— V5| |V1|6162‘> (2.23)
Z
where 0y := £V, — /Vj.

1. For each P, solve (2.23) for |V;| with |V}| and ¢ fixed.

2. Show that |V;| behaves as follows as P increases from P = 0 with the power factor angle ¢ kept
constant: |V,| is a nonunique rool of a polynomial equation in P. As P increases, the resulting
nonunique roots |V, | trace out a curve called the nose curve. As P keeps increasing, eventually, the
polynomial equation has no real root, which is the phenomenon of voltage collapse.

3. Find the maximum power transfer P = Pp,x at which solutions for |V, | exist.



Chapter 3

Transformer models

A large electric network is composed of multiple areas that have different nominal voltage magnitudes.
These areas are connected by transformers that convert between different voltage levels. The ease of
converting between voltage levels is an important advantage of AC over DC transmission systems. It
allows, for example, the transmission network to operate at 765kV to reduce power loss and household
appliances to operate at 120V for safety. In this chapter we develop transformer models and explain how
to analyze a balanced three-phase system that contains transformers.

We start in Chapter 3.1 with models of a single-phase transformer and use them in Chapter 3.2 to
develop models of three-phase transformers in balanced operation. We describe in Chapter 3.3 how to
refer impedances from one side of a transformer to the other side. We apply this method in Chapter 3.4
to simplify per-phase analysis of circuits that contain transformers. We explain in Chapter 3.5 per-unit
normalization that further simplifies the analysis of balanced three-phase systems.

3.1 Single-phase transformer

We first model an ideal single-phase transformer by a transmission matrix and then describe circuit models
of a nonideal single-phase transformer.

3.1.1 Ideal transformer

An ideal transformer has no loss (zero resistance), no leakage flux, and the magnetic core has infinite
permeability. Let N; be the number of turns in the primary winding, N, that in the secondary winding, and
Ny
n:i= —,

Ny

1
a = — =
n Nz

An ideal transformer is represented schematically in Figure 3.1. We will call n the voltage gain and
its reciprocal a the turns ratio. The voltage gain n relates the voltages and currents in the primary and

83



84 Draft: EE 135 Notes April 30, 2024

A\ 4

O +

Vi Vo

N, : N,
. LN
=, =N

Figure 3.1: Single-phase ideal transformer.

secondary circuits, both at all times in the time domain:

= n, —~ = a

and in the phasor domain:

This relation can also be written as

Vil |la 0] |V

) = @
The matrix on the right-hand side is called a transmission matrix of an ideal transformer. It maps (V2,5)
to (V1,11). The dot notation indicates that the currents I}, are defined to be positive when one flows into

and the other out of the dotted terminals, as indicated in Figure 3.1. This notation is convenient when we
use single-phase transformers to construct three-phase transformers.

The ratio of the complex receiving-end to sending-end power is

—S91 . VZI;

= =n-a=1
S12 wil}

i.e., an ideal transformer has no power loss.

3.1.2 Nonideal transformer

A real transformer has power losses due to resistance in the windings (7|I|?), eddy currents and hysteresis
losses. It also has nonzero leakage fluxes and finite permeability of the magnetic core. Figure 3.2(a) shows
elements of a (nonideal) transformer. The primary winding has N; turns around the magnetic core and the
secondary winding has N, turns. The mutual flux &,, due to the currents i; and i/2 links all the turns of the
primary and secondary coils. The two dots indicate that the mutual flux components due to i; and &, add
when these currents both enter (or exit) the dotted terminals according to the right-hand rule. The leakage
fluxes ®;; and @y, links the individual coils. The flux linkages A;; =: L;i; and Ajp =: Ljpi5 due to ®;; and
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core
.

1 . . I,
]I”
Vi 4 Vs V,
primary secondary -0 - - o—
winding winding N, : N,
N, turns N, turns
(a) Nonideal transformer (b) Circuit model

Figure 3.2: Single-phase nonideal transformer. The dashed box represents an ideal transformer with
a:= Ny /N,. Megan: U; — Vi, Uy — V5))

&, are proportional to the currents i; and &, respectively. The proportionality constants L;,L;, are called
inductances. Then the total flux linkages of the primary and secondary circuits are the sums of the leakage
flux linkages and the mutual flux linkage:

M = A +N Dy, L = A +MNPy,
The voltages are

d\ diy do,,
= ri 4+ — = Ly— + N, —" 3.2
vy = rii|+ I riip+ n, +N 0 (3.2a)

dA, di, d®,,
= = L No—— 3.2b
V) = rpiy+—— 7 raiy + lzdt +N; 7 (3.2b)

where ryi; and ryi, represent power losses in the core. The model for an ideal transformer neglects losses
(r1 = r; = 0) and leakage fluxes (A;; = A; = 0) in (3.2) and hence v| = Ny 42n d n and vy = Ny & d L yielding
V1/V2 :Nl/Nz.

The total magnetomotive force F due to the currents i; and 7, is proportional to the mutual flux ®,,:
F = Njii +Npih = R, (3.3)

where R is called the reluctance of the core. The model for an ideal transformer assumes infinite perme-
ability of the magnetic core and hence R = 0, yielding i1 /(—i,) = N»/N;. In practice the magnetic core
has finite permeability, i.e., R > 0 and the the magnetomotive force F is nonzero. When the secondary
circuit is open, i, = 0. The resulting primary current, denoted im, is called the primary magnetizing current
and satisfies N} i,, = R®,, from (3.3).! Define

dd,, diy,
V1 ;= N\—— = L,—
Vi 1 dt m dt 5

Instead of iy, := (R/N;)®,,, we can define i/, := (R/N,)®,, as the secondary magnetizing current when the primary circuit
is open i1 = 0. In this case the shunt admittance y,, in Figure 3.4(a) will be in the secondary circuit.
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where L,, 1= le /R. Substituting into (3.2) yields, denoting i, := —i,, we have
. dll dfm d12
Nonideal elements: vy = riij+Ljj—+V1, V1 = Lp—, Vo = —mip—Lp—+7V
1 by 1 1 m 2 2~ L 2
Ny . Ny . 2
Ideal transformer: v, = — 7, ip = — (i1 —1
2 N 1 2 N, ( 1 m)

where the last equality follows from substituting R®,, = Nji,, into (3.3). This set of equations in the
phasor domain is

Nonideal elements: Vi = zp +Vi, I, = ym\71, Vo = z,h+ Vs (3.4a)
N Ny A N .
Ideal transformer: V, = IVTVI, L = ]7; (11 —Im) (3.4b)

where the series impedances z, := r| + @L;; and z; := r, + @Lj; model the core losses and leakage fluxes
in the primary and secondary circuits respectively, and the shunt admittance y,, := 1/(@Ly) = R/(®N?)
models the finite permeability of the core. The model (3.4) can be interpreted as the circuit in Figure
3.2(b). Variables with hats denote internal variables.

In the following we present three circuit models derived from that in Figure 3.2(b). Their relation is
shown in 3.3. The circuit model in Figure 3.2(b) is equivalent to a 7 equivalent circuit (Chapter 3.1.3). The

| circuit model ‘

T equivalent | _ |unitary voltage
circuit — network
5
| simplified model ‘

Figure 3.3: Relation between different circuit models of transformers.

T equivalent circuit can be approximated by a simplified model whose parameters can be determined by
short-circuit and open-circuit tests (Chapter 3.1.4). The circuit model in Figure 3.2(b) is also equivalent to
a circuit consisting of two ideal transformers connected by a unitary voltage network (Chapter 3.1.5). The
unitary voltage network can be generalized to model nonstandard transformers with multiple windings,
e.g., split-phase transformer. These models reduce to the same model when the shunt admittance y,,
in Figure 3.2(b) is assumed zero (i.e., open-circuited). We emphasize that, by equivalence, we mean two
circuits have the same end-to-end behavior, as described by a transmission matrix or an admittance matrix,
but their internal variables may take different values (we elaborate on this in Chapter 3.1.3).

3.1.3 T equivalent circuit

We can refer the leakage impedance z; in Figure 3.2(b) on the secondary side to the primary side using
(3.14) in Chapter 3.3. The resulting model, shown in Figure 3.4, is called the T equivalent circuit of the



Draft: EE 135 Notes April 30, 2024 87

I
+0 tl &I azz_\. ° h NG
Vl Enz| VZ
o o—
N, : N,

Figure 3.4: T equivalent circuit.

transformer. It is equivalent in the sense that the transmission matrices that map (V»,5) to (Vy,1;) are the
same in both models; see Chapter 3.3.1. Indeed the transmission matrix 7" of the T equivalent circuit is
given by (Exercise 3.1)

Vil _ [a(l+zpym) azs(1+2pym) +nzp| [Va 35)
Il aym n + aZsym ]2 .
T

where n:= N, /N; and a := N; /N;.

Even though the circuit model in Figure 3.2(b) and the T equivalent circuit in Figure 3.4 have the same
transmission matrix, their internal variables may not be equal because of the reference of z; to the primary
side. Indeed (3.4) describes the internal variables of the model in Figure 3.2(b), but not necessarily those
in the T equivalent circuit in Figure 3.4. For instance, when the secondary circuit is shorted, i.e., setting
V, = 0, the internal variables V; and V5 are nonzero in general in Figure 3.2(b), as determined by (3.4),
but these voltages are zero in Figure 3.4. This has implications on parameter determination as we now
explain.

Parameter determination. Two simple tests are often used to determine transformer model parameters:

1. Short-circuit test (Vo = 0). With the secondary circuit short-circuited, the primary voltage V,. and
primary current I, are measured. The primary short-circuit voltage Vi is called the impedance
voltage.

2. Open-circuit test (I, = 0). With the secondary circuit open, the primary voltage V,. and primary
current /. are measured.

To determine the parameters (z,,Zs,yn) of the transmission matrix 7" in (3.5), note that during the short-
circuit test, the voltage on the primary side of the ideal transformer is zero. Hence

1 —1
a Zs
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During the open-circuit test, the secondary current /, = 0 and hence there is zero current on the primary
side of the ideal transformer. Hence

Ym

1
Voe = (Zp + _) Ioe (3.6b)

Since there are three unknowns (z,,s,ym), they cannot be uniquely determined from the two equations in
(3.6). Additional measurements will be needed to determine (z,,zs,ym), €.g. measurements of separate dc
resistances in the primary and secondary circuits. Sometimes y,, is assumed to be zero (open-circuited)
so that (3.6a) becomes V. = (z,, + a’zs)1,., yielding the total leakage impedance Zp + z5. Alternatively
assuming z, = 1z, with known 1 results in two nonlinear equations in two unknowns (s, ).

It may seem that we can measure the current /> in the 7 equivalent circuit in Figure 3.4 during a
short-circuit test and use it to determine (z,,zs,ym), but this is not the case because it will involve internal
variables. Even though we have informally justified (3.6) using internal variables in the T equivalent
circuit, e.g., the voltage and current on the primary side of the ideal transformer, we should be careful
with this line of reasoning. A more rigorous derivation of (3.6) uses the circuit model in Figure 3.2(b), by
setting V> = 0 in (3.4) (Exercise 3.2). In this case, even if the short-circuit current I is also measured, there
are 6 unknowns (Vl,Vz,fm;z,,,zs,ym) but only 5 equations in (3.4) and hence these unknowns cannot be
uniquely determined from just the short-circuit and open-circuit tests either. This implies that we cannot
apply the measured value of short-circuit current I, to determine (2,2, Ym)-

3.1.4 Simplified model

In practice the shunt admittance y,, is much smaller than the leakage admittances (see Example 3.1).
Specifically when |y,,| < 1/]a%z| or |€| := |a®zsym| < 1, we interchange y,, and az, to obtain the sim-
plified model in Figure 3.5(a) with z; =z, + a*z,. An even simpler model assumes y,, = 0, as shown in
Figure 3.5(b).

I, nl, I, I, nl, I

+o—» E > " 2 M »—o+ +o0—> E > - s M > o+

v, E] av, v, v, av, v,

) N N i ) N N )
(a) Simplified model ®) yu=0

Figure 3.5: (a) Simplified model of nonideal transformer including power losses, leakage flux and finite
permeability of magnetic core. (b) Simplified model assuming infinite permeabilitiy.

Transmission matrix. Apply KCL, KVL and Ohm’s law to the model in Figure 3.5(a) to get:

Vi =zl +aVa, I = ym(aVa) + nl
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Hence the transmission matrix 7" is given by

Vil _ (a(l+zym) nz| |V2
= e
7

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.7). When z; = y,, = 0 the model
(3.7) reduces to (3.1) for an ideal transformer.

Approximation to 7 equivalent circuit. We now justify the model in Figure 3.5(a) with z; = z,, + a’zg
as a reasonable approximation of the T equivalent circuit in Figure 3.4(b) when y,, is small. The difference
in their transmission matrices is (from (3.5) and (3.7))

FoT — a(1+Zlym) nzp| a(1~|—zpym) aZs(1+Zpym)+an e a —nz,
AYm n aym n—+azsym 0 -—n

where € := a’zy,,. The conductance in the shunt admittance is negligible in practice and hence the shunt
admittance y,, due to the primary magnetizing current takes the form y,, = (ixm)_1 = —ib,, with b,, > 0.
The leakage impedance z,, takes the form z, = r}, +ix, with r, > 0 and x,, > 0; similarly for z;. Suppose
zZp = Nz, for some real number 1 > 0 and |&| < 1. Then the relative error can be shown to satisfy (Exercise

3.3)

1T -7

— < lg] x 1
Il

where the matrix norm [|A|| is the sum norm ||A[| := ¥; ; |A;;|, or the /1 vector norm when the n X n matrix

A is treated as a vector in C"” (see Appendix 25.1.8.3 for matrix norms). Note that for a < 1, the model
parameters (z;,y,) should be on the high voltage side. When the shunt admittance is neglected y,, = 0,
these two models are the same, i.e., T = T.

Parameter determination. The parameters (z;,y;,) of the simplified model in Figure 3.5(a), or equiva-
lently, in (3.7), can be uniquely determined from two simple tests:

1. Short-circuit test (V, = 0). With the secondary circuit short-circuited, the primary voltage Vy. and
current /. are measured. Then, from Figure 3.5,

L Ve
ISC

The primary short-circuit voltage V. is called the impedance voltage.

2. Open-circuit test (I, = 0). With the secondary circuit open, the primary voltage V,. and current /,,
are measured. Then V,. = (z; + 1/y;u)I,c and hence
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Example 3.1 (Parameter determination). Consider a single-phase distribution (stepdown) transformer with
the following ratings: 2.9 MVA, 7.2 kV / 240 V. Construct the equivalent circuit model in Figure 3.5 from
the following test results:

1. Short-circuit test (Vo = 0). With the secondary circuit short-circuited, a voltage |Vs.| = 500V is
applied to the primary circuit that causes the rated primary current |Ij| to flow.

2. Open-circuit test (I, = 0). With the secondary circuit open, the rated voltage |V,.| = 7.2kV is
applied to the primary circuit. This caused a current of |,.| = 7A to flow in the primary circuit.

Assume z; = ix; and y,, = (ix,,)~!. Determine x; and x,,.

Solution. In the short-circuit test the secondary voltage V, = 0. Hence the voltage on the primary side
of the ideal transformer is zero and the shunt reactance x,, is effectively short-circuited, leaving only the
leakage reactance x; in the primary circuit. Since the rated primary current is |I;.| = 2.9MVA/7.2kV =
403A, we have |Vsc| = |Iczi| = |Lse| x;- Hence x; = 500V /403 A = 1.24 Q.

In the open-circuit test the secondary current I, = 0 and hence there is zero current on the primary
side of the ideal transformer (see Figure 3.5). Hence |Vo| = |loe(z1 + 1/ym)| = [loe|(x; + xm), and x,,, =
Voel/lloe| —x1 =7.2kV/TA —1.24 = 1.03kQ.

As expected,

ym| < 1/]z]- O
In transformer ratings, the ratio of secondary open-circuit voltage to the primary open-circuit voltage

is usually taken to be the voltage gain n, even though more precisely it should be

Vao _ 1/ym

— n—m———
Vl <] + 1/ Ym
In practice the resistances due to core losses are much smaller than the reactances due to leakage fluxes
and finite permeability of the core so that z; =~ ix; and y,, ~ —ib,,. Moreover b,, < 1/x;. For Example 3.1
Vs Xm 1.03kQ

vi  "x+x,  103kQ+1240 ="

Parameter determination from transformer ratings when y,, := 0. If y,, := 0 then the model param-
eter is just the leakage impedance z; in the primary circuit, which can be determined from the short-circuit
test, z; = Vi¢/Ic. Moreover its magnitude can be determined from typical transformer ratings, as follows.

A typical specification of a three-phase transformer includes:

* Three-phase power rating |S3¢|.
* Rated primary line-to-line voltage |V,| and rated primary line current |I;|.
* Rated secondary line-to-line voltage |Vsec| and rated secondary line current |fec|.

 Impedance voltage 3 on the primary side, per phase, as a percentage of the rated primary voltage.
The shunt admittance is assumed zero.
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As mentioned above, the impedance voltage is the voltage drop across the leakage impedance z; on the
primary side of each single-phase transformer in a short-circuit test. The f specification means that
the voltage needed on the primary side to produce the rated primary current across each single-phase
transformer is f3, as a percentage of the rated primary voltage. We emphasize that the short-circuit voltage
and current needed to derive z; should be those across each single-phase transformer, which depends on
the configuration of the primary circuit. If the primary circuit is in A configuration then the short-circuit
voltage and current on the primary side of the single-phase transformer are (assuming balanced positive
sequence):

Iy
“pri €m/6
V3

If the primary circuit is in ¥ configuration then the short-circuit voltage and current on the primary side of
the single-phase transformer are:

A configuration: Vse| = Van| = B|Vpuil, \Le| = |Lp| =

V .
Y configuration: Vie| = [Van| = B ‘ﬁ

) sc| = Han| = ri
sel = Lan| = [Lpril

Since z; = Vi /Isc we therefore have,

o ﬁﬁ’vpri‘,

V..
A configuration: |z;| = Ll Y configuration: |zj| = B Vpril
pri

\/§|Ipri|
We reiterate that V,,;; denotes the line-to-line voltage even for Y configuration; otherwise |z;| = B{Vpril / |Lpri|
for Y configuration if the rated voltage Vi, is line-to-neutral.

(3.8a)

Sometimes the primary line current |I,;| is not specified directly. In that case z; can be determined
from the power and voltage ratings (|S3¢,|Vpril), as follows. If the primary circuit is in A configuration
then the short-circuit voltage and current on the primary side of the single-phase transformer are (assuming
balanced positive sequence):

A configuration: 1S30] = 31So| = 3|Vap| ||
[S3¢]
Viel = Vaol = BVml: Ihel = ool = 355
Note that ;f‘i“’ ,|| is the rated primary current produced in the short-circuit test. If the primary circuit is in Y
pri

configuration then the short-circuit voltage and current on the primary side of the single-phase transformer
are:

Y configuration:  [S3g| = 3|S¢| = 3|Van| {Lan]

Vori |S3¢ | |39
Vel = Vol = B| Bl il = il = 21 =
B IV L T
Since z; = Vi /Isc we therefore have,
36|V, |2 \% .12
A configuration: |z;| = %zr‘l‘; Y configuration: |z;| = ﬁ’|S3p;l|‘ (3.8b)

As mentioned above, V,;; denotes the line-to-line voltage even for Y configuration; otherwise lz1| =
3B|Vpri|*/|S39 | for Y configuration if the rated voltage Viy; is line-to-neutral.
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Figure 3.6: The transformer ratings.

Example 3.2 (Transformer ratings). Figure 3.6 shows a typical specification of a three-phase transformer
in AY configuration:

Three-phase power rating [S39| = 150kVA.

Rated primary line-to-line (high) voltage |Vji| = 480V in A configuration with rated primary line
current |I;| = 180 A.

Rated secondary line-to-line (low) voltage |Vsec| = 208Y /120V in Y configuration with rated sec-
ondary line current |Iic| = 416 A. This notation means that the secondary side is Y -configured with
a line-to-line voltage of 208 V and line-to-neutral voltage of 120 V.

* Impedance voltage B = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings. Determine the magnitude |z;| of the leakage impedance of the transformer.

Solution. The primary side is in A configuration and hence we have
‘S3¢’ =3 ’Sab’ =3 ’Vab I_ab| =3 ’Vpril ‘Iab’
Since (assuming balanced positive sequence)
Iy = lpp—Iea = Ilup (1 - ei27r/3) = Iap- \[3@477:/6
we have |Ii| = /3 |1,|. Hence
|S3(P’ = \/§|Vpri| ‘Ipri|
The rated line-to-line voltage |Vpyi| = [Va5| = 480V. The rated line current |Lyi| = |I,| = 180A. Hence

V3| Vil i) = V/3-480-180 = 149.65 kVA
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which is approximately the power rating [S34| = 150 kVA.

The secondary side is in ¥ configuration and hence we have

Ss9] = 31l = 31Van Tnl = 3| | el = V3 Vocel e

where the third equality follows since Viee = V5 = Vi <\/§ei”/ 6) is the line-to-end voltage. The rated

secondary line-to-line voltage is |Vsec| = 208 V and the line current |Isc| = 416 A, and hence
V3 |Viee| [Isec| = V/3-208-416 = 149.87kVA

which is approximately the power rating 150 kVA.

From (3.8a) the magnitude |z;| of the leakage impedance of each single-phase transformer is (f3 is the
impedance voltage on the primary side)

~ V3B|Verl | V/3:5.45%-480V

lal = - 180A

= 0.2517Q
|Ipri|

O

Distribution system transformers. In the US, single-phase or three-phase stepdown transformers are
typical in the distribution system. The most common three-phase system voltage on the primary side is
12.47 kV, serving more than 50% of loads. This is the line-to-line voltage (magnitude) and hence the
line-to-neutral voltage is |V,,| = 12.47/+/3 = 7.2kV. A typical primary side current rating is |I,,| = 400A.
Hence the total (three-phase) rated apparent power is |S39| = 3|Vau||lan| = (3)(7.2)(400) = 8.6 MVA.
Other common distribution system voltages and their total power at 400A are shown in Table 3.1. The

Table 3.1: Typical distribution system voltages (line-to-line) and their total (three-phase) power rating at

400A current.

line-to-line voltage (kV) || phase voltage (kV) | total power (MVA)
Vab| |Van| |S39]
4.8 2.8 33
12.47 7.2 8.6
22.9 13.2 15.9
34.5 19.9 23.9

advantages of a higher-voltage system include:

* It can carry more power for a given ampacity.

* It has a smaller voltage drop for a given level of power flow, requiring fewer voltage regulators and

capacitor banks for voltage support (see Exercise 2.7.5).

* It has a smaller line loss for a given level of power flow (see Exercise 2.7).
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* It can cover a larger service area since it has a smaller voltage drop and a smaller line loss. Roughly,
for the same load density, the area covered increases linearly with voltage.

* It requires fewer substations since it covers a larger service area, which can be a big cost saving.
The disadvantages of a higher-voltage system include:

* It may be less reliable, since a longer circuit can lead to more customer interruptions.
* Crew safety is a bigger concern with a higher voltage.

* Higher voltage equipment costs more, from transformers to cables to voltage regulators.

The 12.47 kV system seems to strike a good balance.

On the primary side, one end of the winding typically connects to one of the primary phases and
the other end connects to the transformer case which is connected to the neutral wire of the three-phase
system and also earth ground. On the secondary side, the 240V is center-tapped and the center neutral
wire is grounded, making the two ends “hot” with respect to the center tap. These three wires run down
the service drop to the meter and electric panel of a house. This is shown in Figure 3.7. Connecting a

n ¢ ba
L] L] O
+
éj 120V
o 240V
120V
o
777777

Figure 3.7: A common single-phase distribution transformer in the US.

load between either hot wire and the neutral gives 120V while connecting it between both hot wires gives
240V. Note that the transformer is single-phase. This is the split-phase 120/240 V system typical in the
US.

3.1.5 Model with unitary voltage network

Single-phase two-winding transformer. As far as the end-to-end behavior is concerned, the transformer
model in Figure 3.2(b) is equivalent to the model in Figure 3.8(a) where the ideal transformer with turns
ratio N1 /N, is replaced by two ideal transformers in series with turns ratios N; and 1/N,. Referring the
leakage impedances (z,,zs) and shunt admittance y,, to the other sides of the ideal transformers using
(3.14) in Chapter 3.3, this model is equivalent to the one in Figure 3.8(b) where

A2 _ Zp s
Yo = Nl Ym, 1 = ]7127 2 = ]722 (39)
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(a) Equivalent model (b) Unitary voltage network

Figure 3.8: Models of nonideal transformer with unitary voltage network.

The network between the two ideal transformers is sometimes referred to as a unitary voltage network
because the nominal voltage of the network is 1 pu if the scaled nominal voltages V™ /N = VJ°™ /N,
on both sides of the (nonideal) transformer is used as the voltage base for per unit normalization. Note
that no nodes in the transformer models may be grounded. The main advantage of modeling a nonideal
transformer this way is that the unitary voltage network can be generalized from the simple network in
Figure 3.8(b) to a more general network that can be used to model nonstandard transformers with multiple
windings; see below.

We now derive the admittance matrix that maps (V1,V») to (I}, —1I). First focus on the unitary voltage
network, shown in Figure 3.9, where y; :=1/z; = leyp, v =1/ = szys with y, :=1/zp, ys 1= 1/z,.
Variables with hats denote internal variables.>2 The variables (\70,\71,\72) are defined as voltage drops as

I I
+0 :1 @ T 4 @ :2 o +
4 7o 0] £

Figure 3.9: Unitary voltage network of the model in Figure 3.8(b).
shown in the figure and (fo,f l,fz) are the current injections at these nodes with Ip := 0. Then
I = yi(Vi = V), L = y(h—V), h+h+5 = yo% (3.10)

or in terms of admittance matrix (we will study admittance matrices in detail in Chapter 4)

I:o Yotyi+y2 —y1 —» ‘:/0
I = -y yvi O Vi
b -y 0 » ][V

Since [y = 0 we can eliminate V; and derive the Kron-reduced admittance matrix Y,y that maps (Vl , ‘72)
to (I1,5). Let I := (I},) and V := (V1,V). Then I = Y4,V where Yy, is the Schur complement of

2The explicit separation of internal variables (e.g., V,-,IA,-) and terminal variables (e.g., V;,I;) may not be significant for
single-phase devices but turns out to be crucial in modeling three-phase devices; see Chapters 7 and 8.
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yo+Yy1 +y2 (see Appendix 25.1.3.1 for details of Schur complement):

yi 0 1 [)’1] 1 [yl(YO+y2) —y1y2
. _ - 3.11a
e {0 yz] Y2 ovi 2 b1 ] Yovil —yw2  »200+y) (3.11a)

Next connect the two ideal transformers to each side of the unitary voltage network; see Figure 3.8(b).
Let/:=(I},—5) and V := (V}, V). The conversion between internal variables (V,[) and terminal variables
(V,I)isV =MV and [ = M~'I where

[N 0
M = { 0 1/N2] (3.11b)

Substituting into J = YuynU we obtain the relation between the terminal variables V to I
I = (MYyynM)V (3.11¢)

where MY,ynwM is called the admittance matrix of the transformer. It can be shown that (3.11) is equivalent
to the T equivalent circuit (3.5) (Exercise 3.4). As a consequence the model parameters (yo,y;,y2) cannot
be uniquely determined by just the short-circuit and open-circuit tests.

We often do not know the numbers Nj, N, of turns of the primary and secondary windings respectively,
but can determine the turns ratio a := Nj /N, from the specified rated voltages. The admittance matrix
MYyynM can also be written in terms of the turns ratio a (Exercise 3.5):

VpYs 1 +ayu/ys —a

Yy uvn azym—l-az)’p +ys —a a2(1 +)’m/yp)

(3.11d)

If yo =y = 0 then both (3.5) and (3.11) are equivalent to the simplified model in Figure 3.5(b). In this case
the model parameter is just the leakage impedance z; in the primary circuit, which can be determined from
standard power ratings as described above. Recall that z; = z,, + a’z; and hence the leakage admittance in
the simplified model is

1 1 YpYs

YZ = —_— = =
Z] l/yp +a21/}’s GZYp+yS

Indeed, when y,, = 0, the admittance matrix Yyy is the same for both the simplified model and the unitary
voltage network model, from (3.11d):

1 —a
Yyy = MYyuM = y; [_a aZ]

Multi-winding transformers. The single-phase circuit model in Figure 3.8(b) can be generalized in
two ways, or a combination. First, multiple copies of the single-phase model can be connected in A or
Y configuration on each side to create models for three-phase transformers. This is derived in detail in
Chapter 8.3 for unbalanced three-phase systems. Second, the unitary voltage network can be generalized
to model nonstandard transformers with more than two windings. As an illustration we now use this
approach to model a split-phase transformer.
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Figure 3.10: Single-phase split-phase transformer.

Figure 3.10 shows a single-phase split-phase transformer. The internal voltages (Vp,V;,V5,V3) and
currents (fo,fl ,fz,f3) on the unitary voltage network are defined in the figure. The admittance matrix that
maps these voltages to currents is given by:

Iy Yo n —» —n|[%
{1 I e A B 4 0 0 Yl
I S l» 0 oy 0 V2
I3 -v3 0 0 y3]|V3

Let V := (V;,V5,V3) and [ := ([ ,fz,f3). Since [y = 0 we can eliminate V; to relate [ = YV where Yy
is the Kron-reduced admittance matrix:

Y1 0 0 1 V1
Yon == [0 2 0 — 2| 1 vz 3
0 0 y3 Zi=0Yi|ys
L |00+ y2+y3) —y1y2 —Yy1)3
=T —y2y1 y2(y0+y1+y3) —y2Y3 (3.12a)
i —Y31 —y3y2 y3(yo+y1+52)

This extends in a straightforward manner Yy, in (3.11) from two to three windings.

Next we connect ideal transformers to the unitary voltage network as shown in Figure 3.10. The
terminal voltages V := (Vi,V5,V3) and currents I := (I}, —L,—1), as well as the internal current /3 into
the third winding, are defined in the figure. Let M := diag(1/Ny,1/N,1/N3). Then V = MV and, using
L+L+5=0,

I L
f=mM'-L| =M —b —: M 'AI
I L1

where

(3.12b)

—_—— O
—_ o O
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Substituting into [ = Y4,V we obtain the relation between the terminal variables V to I:

I = AN (MYyuM)V (3.12¢)

3.2 Three-phase transformers

In this section we develop models for a balanced three-phase transformer and derive its single-phase
equivalent.

3.2.1 Ideal transformers

The primary and secondary circuits of a three-phase transformer can be arranged in four different config-
urations: Y'Y, AA, AY, YA. Figure 3.11(a) shows a primary three-phase winding in Y configuration and
its schematic diagram. The winding on the first magnetic core goes from terminal a to neutral n and then
connects with the neutral terminals on the second and third magnetic cores. It matches the connectivity in
the schematic diagram where the windings are indicated by the thick lines. Figure 3.11(b) shows a sec-

I a 1 a I a s I a )
a do——¢ E »—oda a
g | D
P
| D
ne—— > —
n )
bo 5 E ob
<_> >
< | Y
L TP r_
bo , b’
co 5 oC )
Cco—— Sy > oC
| >
A %ﬁ
(a) Primary winding in ¥ configuration (b) Secondary winding in A configuration

Figure 3.11: Primary and secondary windings in ¥ and A configurations respectively. The thick lines in
the schematic diagrams represent transformer windings.

ondary three-phase winding in A configuration and its schematic diagram. In both diagrams, the windings
go from terminal a on the first magnetic core to terminal b on the second magnetic core to terminal ¢ on
the third magnetic core.

We now derive the properties of ideal three-phase transformers in YY,AA, AY, Y A configurations. We
will first derive the terminal behavior. This means the line-to-line voltage gain and the line current gains
in these configurations. We then derive the line-to-neutral voltage and current gains of their Y'Y equivalent
models, which yields their per-phase circuits. We will see that, as expected, the terminal behavior of a
three-phase transformer has the same gains as those in its per-phase circuit. The derivation proceeds in
three steps:
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1. Internal model: Derive the voltage and current gains for each single-phase transformer.

2. External model: Derive the line-to-line voltage gains and line current gains for the three-phase
transformer.

3. YY equivalent: Derive the Y'Y equivalent circuit from which a per-phase circuit can be obtained.

The voltage and current gains in step 1 are defined by the pairing of primary and secondary windings in
each single-phase ideal transformer and depends on the configuration. Steps 2 and 3 apply the following
relation between line voltages/currents and phase voltages/currents to the single-phase voltage and current
gains:

Y configuration (line voltages): Vo = v3e*/°V,,, Voy = V3%0v, (3.13a)
A configuration (line currents): L, =3 e im/0 Ly, I, = —\/3e7 /0 Ly (3.13b)

where the signs of the current gains are different on the primary side (entering terminal a and the secondary
sides (leaving terminal a’) of A configuration. The relations (3.13) follows (1.12) (1.13), reproduced here

Y configuration: yline — y¥
A configuration: [ =+TTA

Assuming positive sequence, the balanced voltages V¥ and currents /* are in span(o; ) and hence Corol-
lary 1.3 implies

Y configuration: yine — (1 —a)v¥ = V3r/oyY
A configuration: I==+(1-a>)I* =+ V3 1m/0yA

In per-phase analysis later, we will convert each A configuration into an equivalent Y configuration. For Y'Y
configurations, line voltage/current gains are equal to line-to-neutral voltage/currents gains and therefore,
with Y equivalents, we often use the ratios Vs /V,, and —I,y /1, to represent both the internal and the
external models.

YY configuration. The winding of an ideal three-phase transformer in Y'Y configuration and its schematic
digram are shown in Figure 3.12(a). The parallel lines in the schematic diagram indicate corresponding
primary and secondary windings in the single-phase transformers. From the figure, the Y'Y configuration
is characterized by the following voltage and current gains:

Vo

_Ia/n’ 1
n?
Van

Iy _
Ia

L., n

Note the opposite directions of the currents I, and I,,,. The line voltages, being proportional to phase
voltages from (3.13a), have the same ratio, i.e., its external model is the same as its internal model. The
voltage and current gains are the same for phases b and ¢ as well under balanced operation.
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(a) YY configuration (b) AA configuration

Figure 3.12: Ideal three-phase transformers in Y'Y and AA configurations. The parallel lines in the
schematic diagram indicate corresponding primary and secondary windings.

AA configuration. The winding of an ideal three-phase transformer in AA configuration and its schematic
digram are shown in Figure 3.12(b). It is characterized by the following voltage and current gains from
the single-phase transformer:

Valbl —Ialbl

1
= n, = —
Vab Lap n

Applying (3.13b) to both I, on the primary side and I, = —v/3¢77/°[,,, on the secondary side, the
external model is
Va/b’ Ia/

1
_ = n’ _ = =
Vab Ia n

Similarly for voltage and current gains on other lines.

Equivalent YY configuration. To calculate the ratio of line-to-neutral voltages of an equivalent Y'Y config-
uration, we use (3.13a) to obtain

-1
in/6 Y
VaY/n/ (ﬁelﬂ/> Va’b/ Va'b’
= = = n

Val; (\/§€in’/6) - V;; Vab

since vjb, =V, and Valg =V, by the definition of Y equivalence. To calculate the ratio of the phase
currents in the equivalent Y'Y configuration, we use the property that the terminal currents in the AA
configuration and its equivalent YY configuration are the same. Therefore I}, = I} = I, and —15, S IaY, =
1,. Hence

_Iclz/’n’ _ L
. 1,
Therefore the line voltages and currents in the AA configuration and the phase voltages and currents in its

equivalent Y'Y configuration have the same ratios. The voltage and current gains for phases b and c are the
same as for phase a under balanced operation.
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AY configuration. The winding of an ideal three-phase transformer in AY configuration and its schematic
digram are shown in Figure 3.13(a). It is characterized by the following voltage and current gains in the

Ao - oa co oc’
g Y 4 >
4 > Ly L 4 S I, 1
— ——e N a0—p—— a ne—— — o—p » O
bo b g bo ob m
g > Ll D
g Y L D
b b ] b b
c I -
COo C ao—» »—od
g D Ll D
g =Y L >
(a) AY configuration (b) YA configuration

Figure 3.13: Ideal three-phase transformers in AY and YA configurations. The parallel lines in the
schematic diagram indicate corresponding primary and secondary windings. Note the wiring of the YA
configuration.

single-phase transformer:

Va/n/ _Ia/n/ 1
—_ = n7 —_ = =
Vab

Iab n
To obtain the external model we have (assuming positive sequence)

Vo 3 i7t/6V L .
ay fe an \/gem:/6n —- KAy(I’l)
Vab Vab
where the complex voltage gain
Kay(n) = /3n %/
boosts the voltage gain by 1/3 and shifts the phase by 30°. The line current gain is (using (3.13b))
ly — Ly B 1 B 1
1, \/ge—in/61ab \@e—in/6n sz(n)

Similarly on other lines.

. ~1 . ~1
Equivalent YY configuration. We have on the primary side V! = (ﬂ e/ 6) VY = <\/§ e/ 6) Vab

since V¥ =V, by definition of Y equivalence. Hence
ab y q

Vo V. . Vi
;;l = , a6n_1 = V376 —‘j" = Kay(n)
LT (Ve v, w

To calculate the phase currents in the equivalent ¥ configured primary circuit, use (3.13b) to get I}, = I, =
V3e 1m/6 [ Hence

—dan —La'n 1 o 1

o \Bein/of, - V3nei®/6 Kz, (n)
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This also implies I, = K, (n)Iy. As expected the voltage and current gains in the AY configuration are the
same as those in their Y'Y equivalent. Hence the phase voltages and currents on the secondary and primary
sides of the Y'Y equivalent configuration are related as:

Va’ n Vb’ n' Vc’ n

= = Kay(n
A7 S AL
I A
L A L. K5, (n)

The AY connection has several advantages (e.g., a gain of v/3 in addition to the gain n due to turns ratio)
and is the most commonly adopted in practice.

YA configuration. The winding of an ideal three-phase transformer in Y A configuration and its schematic
digram are shown in Figure 3.13(b). Note that the windings in phase an on the primary side are not paired
with the windings in phase a’b’ on the secondary side, but with @’'c’ instead. Otherwise a Y A-configured
transformer with primary on the left will be the same as a AY -configured transformer with primary on the
right (see Example 3.6 and Exercise 3.6).

The Y A configuration in Figure 3.13(b) is characterized by the following voltage and current gains in

a single-phase transformer:>
Valcl _ IC/a/ _ 1
Van ’ Ian n
To obtain the terminal behavior we have (assuming positive sequence)
Va’ e Va/ e Va/ ¢ n ir /6
= = - = —=€ = KYA n
Vac Van - Vcn \@e“”/6Van \/§ ( )
The line current gain is
Ia’ . Ic/a/ — Ia’b’ . \/gei”/6 Ic’a/ . \@eiﬂ/6 . 1
L~ Im m Coon K

Similarly on other lines.

Equivalent YY configuration. To obtain the ¥ equivalent Valf v Of the A configuration we have

Voo = Va):c’ = VaY Vc)’/n/ = V): /(1 - ei2ﬂ/3) = \/:)Te_m/6 Va)//n/

'n' ~ a'n
Hence
. -1
Vg / (\/ge_m/6> Ve
an

oo DN e

3Despite the connectivity, positive sequence still means

—i2n/3 i2n/3
Vin = e i2z/ Van, Ven = e / Van
Ve = 67127r/3 Vo, Verg = elZﬂ?/3 Vay

It amounts to assumptions about the relative phases of voltages applied to the terminals a, b, c.
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Similar to (3.13b), we relate the line and phase currents on the secondary side, — , o =l =30 [,
Hence
_Ic)zl’n’ B \/§€in/6 Loy B \/§€iﬂ/6 B 1
Ian Ian n K;A(n)

This also implies I, = Ky ,(n)I,. As expected the line voltage and current gains in the YA configuration
are the same as those in their Y'Y equivalent. Hence the phase voltages and currents on the secondary and
primary sides of the YY equivalent configuration are related as:

vy, vy, vy,
an’  _ b _ dn Kya (I’l)
Van Vbn Vcn
P A
1, I I. K; A (n)
Property Gain Configuration Gain
Voltage gain K(n) YY Kyy(n):=n
Current gain K+(ﬂ) AA Kaa(n) :=n
Power gain 1 AY Kay (n) := V/3n €ir/0
Sec Z; referred to pri ‘ K(Z’i P YA Kya(n) := \% elm/6

Table 3.2: Ideal complex transformer properties.

Summary. These properties of an ideal three-phase transformer in balanced operation are summarized

in Table 3.2. For each configuration, K(n) denotes the complex voltage gain of an ideal three-phase
transformer:

V.
voltage gain —— = K(n)
Vpri
. IS(‘)C _ 1
current gain — = "
Ipri K (”)

As we have shown, these gains apply to both phase voltages/currents and line voltages/currents in both the
original transformer and its Y'Y equivalent. Hence the complex power gain is 1 for ideal transformers:

Y Y \x
—_S/ — Va'n’ (_Ia'n’) _ 1
§ Van (1)

It often simplifies per-phase analysis of a balanced system to refer series impedances and shunt ad-
mittances on one side to the other side of a transformer. This is explained in Chapter 3.3. In particular, a
secondary series impedance Z; is referred to the primary as Z;/|K(n)|* according to (3.14) below. When
terminated in a symmetric three-phase impedance load Z;,,q4 on the secondary side so that Va’fn/ = Zioadl 5/”,
the per-phase driving-point impedance on the primary side is

VaYn — a n//K( ) _ Zload
1, ), K*(n) K (n)[*
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The different configurations of three-phase transformer banks can also be represented compactly as in
Figure 3.14 (see its caption for details).

a a a
c b
c b c b’
a a a a
A A b,
n
c b c b’
c b 7
(a) YY and AA configurations (b) AY and Y A configurations

Figure 3.14: Compact representation of ideal three-phase transformers in (a) Y'Y, AA configurations and
(b) AY, YA configurations. For instance, in the YY configuration, the vertical arrow represents the vector
Van in the complex plane. The arrow from b to a (not shown) represents the vector V,;,. The parallel lines
in the diagram indicate corresponding primary and secondary windings.

3.2.2 Nonideal transformers

In this section we first present circuit models of (nonideal) three-phase transformers and then their per-
phase equivalent circuits after all A-configured transformers have been converted into their ¥ equivalents.

Per-phase equivalent circuits. Figure 3.15(a) shows a model of balanced three-phase (nonideal) transform-
ers in Y'Y configuration and Figure 3.15(b) shows its per-phase equivalent circuit. The per-phase circuit
is identical to that in Figure 3.5(b). Figure 3.16(a) shows a model of balanced three-phase transformers
in AA configuration. Its Y'Y equivalent and per-phase circuit are identical to those in Figure 3.15 except
that the equivalent leakage impedance Z;/3 is one-third of the value in the original AA circuit and the
shunt admittance 3Y,, is three times the value in the original AA circuit. This can be verified by checking
the secondary open-circuit equivalent and the secondary short-circuit equivalent of the original AA circuit.
Figure 3.17 shows a model of balanced three-phase transformers in AY configuration and its per-phase
equivalent circuit. Finally Figure 3.18 shows the model for Y A configuration and its per-phase circuit.

Hence balanced three-phase transformers in Y'Y, AA, AY and Y A configurations all have the same per-
phase equivalent circuit, with appropriate values for their leakage impedance and shunt admittance and
the corresponding (complex) transformer gains K (n).
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K,(n)=n
[ e I
— Z —— »—o
s + : : +
a N :
"' V. -] BB v
\ A 1] ;
o - : o}
y o lin
C “esesssssss
(a) YY configuration (b) Per-phase circuit

Figure 3.15: Model of three-phase transformers in Y'Y configuration and its per-phase equivalent circuit.

K, (n)=n
! e I
{73 — — > o
+ : +
V. "] 8B Vi
° o
l:n
(a) AA configuration (b) Per-phase circuit

Figure 3.16: Model of three-phase transformers in AA configuration and its per-phase equivalent circuit.
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K,y (n)
/_/%
/ oo - I
{73 : : > o
+ : +
. B sEM -
o : °
1:4/3n:

(b) Per-phase circuit

Figure 3.17: Model of three-phase transformers in AY configuration and its per-phase equivalent circuit.

i

(a) YA configuration

’
a

b’

B
c

Ky, (n)
—
I e I
Zz N ——0
+ : +
.1 BEM
5 5 5 5
1:n/3

(b) Per-phase circuit

Figure 3.18: Model of three-phase transformers in Y A configuration and its per-phase equivalent circuit.
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3.3 Equivalent impedance in transformer circuit

In this subsection we explain how to derive an “equivalent” impedance when looking into the terminal,
either on the primary side or on the secondary side of a transformer. Consider the singe-phase equiva-
lent circuit of a balanced three-phase transformer. A series impedance Z; in the secondary circuit of the
transformer can be equivalently replaced by a series impedance Z), in the primary circuit, and vice versa,
provided they are related by:

Z

= KmP

or equivalently Z, = |Kn)* 2, (3.14a)

The first operation in (3.14a) is called referring Z; in the secondary to the primary. The second operation
is called referring Z, in the primary to the secondary. A shunt admittance Y; in the secondary circuit of the
transformer can be equivalently replaced by a shunt admittance Y), in the primary circuit, and vice versa,
provided they are related by:

Yp

Y, = |Kn)]*Y, or equivalentl Y, =
p ’ (n')| s quiv y s |K(n)]2

(3.14b)

These operations will be used as a shortcut in the analysis of circuits that contain transformers the same
way we use the Thévenin equivalent of impedances in series or in parallel; see Chapter 3.4.

Here “equivalence” means that the external behavior remains unchanged when a series impedance or
a shunt admittance on one side is referred to the other. Specifically we consider two kinds of external
behavior. In the first case, explained in Chapter 3.3.1, the external behavior is the transmission matrix
that maps (Va,5) to (V1,1;). In the second case, explained in Chapter 3.3.2, the external behavior is the
driving-point impedance on one side of the transformer when the other side is connected to an impedance.
We next derive (3.14) as a simple consequence of Kirchhoff’s and Ohm’s laws.

3.3.1 Transmission matrix

Consider the per-phase transformer circuits in Figure 3.19 of a balanced three-phase system, one with a
series impedance in the secondary circuit and the other in the primary circuit. Let 7y and 7}, denote the
transmission matrices that maps (V»,15) to (Vy,1;) in Figure 3.19(a) and Figure 3.19(b) respectively. We
claim that the relation (3.14a) between series impedances Z, and Z; ensures that 7y = T,. It is in this sense
that we say these two circuits are equivalent.

To show that Ty = T, let V denote the voltage at the secondary terminal of the ideal transformer in
Figure 3.19(a). Then

V=W+zl, =05

Rl

or
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1 I 1 1
+ + + +
Vi K(n) v, Vi K(n) v,
o o o o
ideal ideal
transformer transformer
(a) Series impedance Z; in the secondary circuit. (b) Series impedance Z, in the primary circuit.

Figure 3.19: Referring series impedance in the secondary to the primary.

Then

] - o0 o510 - oo el
Similarly, for the circuit in Figure 3.19(b), we have

] - A0 Sl - [ sl

Hence Ty = T), if and only if (3.14a) holds.

The relation (3.14b) between shunt admittances Y, and Y; ensures that the transmission matrix for the
circuit in Figure 3.20(a) is the same as that in Figure 3.20(b). This is left as Exercise 3.8.

Il
>
»-

O
+ +

v K(n) [Y] |4 4 [Y] K(n) |4

]2
>

1

\ A

+ O

+ 0

ol
(o}
o
(o}

ideal ideal
transformer transformer

(a) Shunt admittance Y in the secondary circuit. (b) Shunt admittance Y, in the primary circuit.

Figure 3.20: Referring shunt admittance in the secondary to the primary.

The operations in (3.14) can be repeatedly applied to a circuit involving multiple impedances and
admittances, as illustrated in the next example.
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Example 3.3. A combination of a series impedance Z; and a shunt admittance Y in the secondary circuit,
as shown in Figure 3.21(a), can be referred to the primary one element at a time, starting from the element
that is closest to the ideal transformer. The transformer gain is K(n) = n = 1/a. Referring the series

Y~
~
>
o~

A AS)
o~

Y~

a’Z,

v 8 (] v g [ v 1l g8 v

N, N, N, N, N, N,

ideal ideal ideal
transformer transformer transformer

(a) (Zy,Ys) in the secondary circuit. (b) Refer Z; to the primary. (c) Refer Y to the primary.

Figure 3.21: Referring (Z,,Y;) in the secondary to the primary.

impedance Z; to the primary yields the equivalent circuit in Figure 3.21(b) with an equivalent primary
impedance a?Z;. Referring then the shunt admittance Y; to the primary yields the equivalent circuit in
Figure 3.21(c) with an equivalent shunt admittance n>Y;. ]

3.3.2 Driving-point impedance

In the second case the external behavior is the driving point impedances on one side of the transformer
when the other side is connected to an impedance. In general suppose we apply a voltage V across two ter-
minals that are connected to a network of impedances and transformers. Suppose a current / flows between
these two terminals through the network. The ratio V /I is called the driving-point impedance at these ter-
minals. For networks consisting of a cascade of impedances in series and in parallel, the driving-point
impedance is also called the Thévenin equivalent impedance. The Thévenin equivalent impedance of such
a network can be derived by repeatedly applying simple reduction rules for the two basic configurations
shown in Figure 3.22. For two impedances Z1, Z; in series depicted in Figure 3.22(a), the Thévenin equiv-

1 1 I 1
o—> o o— o—
+ + + +
V V Zcq =2,+2Z, V [Z] [ZJ V 7Z = (L_;_i)i
1 \z 2z,
o o— o o
(a) Impedances in series (b) Impedances in parallel

Figure 3.22: (a) Thévenin equivalent Z.q of two impedances Z;,Z; in series. (b) Thévenin equivalent Zq
of two impedances Z|,Z, in parallel.
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alent impedance Zq is defined such that the two networks in Figure 3.22(a) have the same driving-point
impedance:

Vv
7= Z\+2Zy = Zeg (3.15a)
Similarly the Thévenin equivalent impedance of two impedances in parallel depicted in Figure 3.22(b) is

defined to be:

1% 1 1\!
LA = Z 3.15b
I (zl +Zz> “ ( )

These are simple consequences of Kirchhoff’s and Ohm’s laws. Repeated application of (3.15) reduces a
cascade of impedances in parallel and series into a single equivalent impedance that preserves the driving-
point impedance.

When such a network contains not just impedances, but also transformers, the relation (3.14) allows
us to reduce it to a single Thévenin equivalent impedance with the same driving-point impedance. As we
explain below, the key element of this procedure is the driving-point impedance seen from two terminals
of one side of a single-phase transformer when the other side is connected to an impedance Zq that may
be the Thévenin equivalent of a network of impedances. This yields an equivalent network where the
transformer and Zq is replaced by a scaled impedance and the number of transformer is reduced by 1.
Repeated application of (3.14) and (3.15) can then be used to remove all transformers from the equivalent
network, allowing the derivation of the Thévenin equivalent impedance of the original network. When
applicable, this technique greatly simplifies per-phase analysis of a balanced system as we will see in
Chapter 3.4.

We now explain the key building block of this procedure. When the secondary side of an ideal trans-
former is connected to an impedance Z ¢q as shown in Figure 3.23(a), the transformer and the impedance
75 eq can be replaced by the Thévenin equivalent impedance Z; ¢q/|K(n)|? in the sense that the driving-
point impedance V; /I; on the primary side is the same in both circuits in Figure 3.23(a). This is the same
operation that refers Z; ¢q in the secondary to the primary expressed in (3.14a). It is a consequence of the
Kirchhoff’s and Ohm’s laws and is derived in Exercise 3.10. Similarly when the primary side is connected

I, 1, I, 1
oO—p—— »- o—p— > ——o0 ———————»—O
+ + + +

1
1% K(n) E] v, sz.eq EQ K(n) V, K| Z,., V,
S _ _ _
ideal ideal
transformer transformer
(a) Vi /I, on the primary side (b) Vo/L on the secondary side

Figure 3.23: Driving-point impedances

to an impedance Zj ¢q as shown in Figure 3.23(b), the transformer and the impedance Z; ¢4 can be replaced
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by the Thévenin equivalent impedance |K (n)|? Z; ¢ in the sense that the driving-point impedance V5 /I
on the secondary side is the same in both circuits in Figure 3.23(b). This is the same operation that refers
Z1 ¢q in the primary to the secondary expressed in (3.14a) (see Exercise 3.10).

We caution that the shortcut (3.14) and (3.15) are not always applicable. For example they may not be
applied to a circuit that contains parallel paths; see Example 3.7 in Chapter 3.4.2. In that case we analyze
the circuit using Kirchhoff’s and Ohm’s laws. The shortcut is usually applicable to a radial system that
does not contain parallel paths. We now illustrate its application in the derivation of the driving-point
impedances on the primary and the secondary side.

Example 3.4 (V;/I; on the primary side.). Consider the network in Figure 3.24(a) where the secondary
side is connected to a network whose Thévenin equivalent is Z; .q. What is the driving-point impedance
Vi /I}? We first derive the driving-point impedance directly using Kirchhoff’s and Ohm’s laws. We then

1
v, E] vl Ko | v (24l v, B Ko >

o
(o]

ideal
transformer

(a) Transformer circuit (b) Equivalent circuit seen on the primary side

Figure 3.24: Driving-point impedance V; /I; on the primary side.

use the result to verify the shortcut expressed in (3.14) and (3.15).

Circuit analysis. We have for the primary circuit

|:V1:| _ {l‘f‘zl,eqyl,eq Zl.,eq:| [V1,:|

I Yl eq 1 I
Hence
[Vl] _ {1+Zlveqyl,eq zmq] [K—l(n) 0 Hvz’]
I Y| eq 1 0 K*(n)| | I}
Substituting

Vy = Zoeqh
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we have
Vil _ [14+ZieqVieq Zieq| [IK(m)| 72 O] [Zaeq] gorp vy
[11] - [ Yl eq 1 o 1| 1 | KA
Y eq 1 1

Hence the driving-point impedance is

Iy YLeq (ZZ,eq/’K(n)‘z) + 1
or equivalently
h Zieq + (Y b )_1 (3.16)
= = 7 3 ‘
Il ,eq ,eq Zz’eq/|K(n)’2

It is the Thévenin equivalent on the primary side of a network consisting of impedances, admittances,
as well as an ideal transformer. The Thévenin equivalent (3.16) has a simple interpretation, as we now
explain.

Shortcut.. Use (3.14a) to refer Z; ¢4 in the secondary to the primary, we can replace the ideal transformer
and Z, ¢q by the equivalent impedance Z, ¢q/|K (1) |? and arrive at the equivalent circuit in Figure 3.24(b)
seen from the primary side. The application of (3.15) then yields the driving-point impedance (3.16). [

Example 3.5 (V, /I, on the secondary side.). Consider the circuit in Figure 3.25(a) where the primary
side is connected to the impedance Zj ¢q. Use (3.14a) to refer Z; ¢q in the primary to the secondary, we

2] v | Ko | W E] v, K 2, E] v,

(o}
(o)

ideal
transformer

(a) Transformer circuit (b) Equivalent circuit seen on the secondary side

Figure 3.25: Driving-point impedance V5 /I, on the secondary side.

can replace the ideal transformer and Z; ¢q by the equivalent impedance |K(n)|>Z, ¢q and arrive at the
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equivalent circuit in Figure 3.25(b) seen from the secondary side. The application of (3.15) then yields the
driving-point impedance:

Vs 1 -1
2 (v + ) (3.17)
15 ( N Zyeq + K1) Z1 g

]

3.4 Per-phase analysis

In this section we apply the techniques developed in the previous sections in the analysis of a balanced
three-phase power system consisting of generators, transformers, transmission lines, and loads, in a mix
of Y and A configurations. We first explain how to obtain a per-phase equivalent circuit of the system and
then illustrate, through an example, the per-phase analysis using the shortcut (3.14) and (3.15). Finally we
discuss a circuit that contains parallel paths to which the shortcut is not applicable. We explain why the
end to end complex transformer gains on these paths should be equal.

3.4.1 Analysis procedure

We have explained in Chapter 1.2.5 how to convert all sources, series impedances, shunt admittances in
A configurations into their equivalent Y configurations and obtain a per-phase equivalent circuit. Chapter
3.2.1 shows that an ideal balanced three-phase transformer has a per-phase equivalent model specified by
a complex voltage gain K(n) that relates the line-to-neutral voltages and the line currents on two sides
of the transformer. Chapter 3.2.2 shows how to incorporate the transformer series impedance and shunt
admittance into the per-phase model for both ¥ and A configurations. Chapter 3.3.1 explains how to refer
series impedances and shunt admittances on one side to the other and Chapter 3.3.2 explains how to use
this shortcut to simplify circuit analysis the same way we use Thévenin equivalent of impedances in series
or in parallel. Putting everything together the procedure for per-phase analysis of a balanced three-phase
system is as follows:

1. Convert all sources and loads in A configuration into their ¥ equivalents using (1.31a) for sources
and (1.31b) for loads.

2. Convert all ideal transformers in A configuration into their ¥ equivalents with voltage gains K (n)
given in Table 3.2.

3. Obtain the phase a equivalent circuit by connecting all neutrals.

4. Solve for the desired phase a variables. Use Thévenin equivalent of series impedances and shunt
admittances in a network containing transformers to simplify the analysis when applicable, e.g., for
a radial system.

5. Obtain variables for phases b and ¢ by subtracting (or adding) 120° and 240° from the phase a
variables for positive-sequence (negative-sequence) sources. If variables in the internal of the A
configurations are desired, derive them from the original circuits.
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We illustrate this procedure in the next example.

Example 3.6. Consider the balanced system described by the one-line diagram in Figure 3.26(a) where a
three-phase generator is connected to a stepup three-phase transformer bank (primary on the left) in AY
configuration, which is connected through a three-phase transmission line to a stepdown transformer bank
(primary on the right) in AY configuration, and then to a load. The terminal line voltage of the generator

8% Ly § g
AY Y A l
Zload
(a) One-line diagram
I v ..... v Lo I
: Z, 7, —>
+ al : + — +

; gg || v || 8B A

(o}

Co "N T )
Y Y Y
transformer T] transmission transformer T2
line

(b) Per-phase circuit
Figure 3.26: Example 3.6.

is Viine. The transmission line is modeled by a series impedance Zj;,. and the load is assumed to be an
impedance Zj,q. The transformer banks are made up of identical single-phase transformers each specified
by a series impedance of 3Z; and a turns ratio of a :== 1/n.

Find the generator current, the transmission line current, the load current, the load voltage, and the
complex power delivered to the load in terms of the given parameters.

Solution. The per-phase equivalent circuit is shown in Figure 3.26(b). Note that the stepdown AY trans-
former near the load has its primary side on the right and secondary side on the left so that, going from left
to right, the voltage (current) angle is shifted down (down) by 30° and their magnitudes scaled down (up)
by v/3n.* The primary sides of both the stepup and stepdown transformers have been converted from A

4 See Exercise 3.6.
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to its ¥ equivalent, with an equivalent series impedance Z; that is 1/3 of the original impedance 3Z;. The
phase voltage of the generator is

Our solution strategy is as follows. We will use (3.14) and (3.15) to refer all the (load, transformer, and
transmission line) impedances to the primary side of the stepup transformer. This calculates the driving-
point impedance seen at the generator. Given generator phase voltage V|, we can derive the generator
current /1. We then propagate this towards the load to calculate the other quantities.

Let K(n) := V3nelm/o. Going from right to left, we cross the stepdown transformer 75 from the
primary to the secondary. Referring the impedance Zj ¢q := Zjoaq + Z; On the primary to the secondary (see
Figure 3.23(b)), the equivalent impedance at the right-end of the transmission line is

K(n)* (Zioaa +Z1)
Hence the equivalent impedance at the secondary side of the stepup transformer 7j is
ZZ,eq ‘= Zline + ‘K(n)|2 (Zload +Zl)

Referring this impedance to the primary side of 77 (see Figure 3.23(a)), the driving point impedance at the
generator is:

Vi

1
5 = At g B & K0P (Zia +21)
Zline
27 —_— Z

Hence the primary side of 7; sees the series impedance Z; of the two transformers, a scaled down version
of the line impedance Zji,e, and the load Zjo,q, all in series. Note that, seen from the generator, the load
Zjoad goes through a stepdown transformer and a stepup transformer and therefore the scaling effects of
these two transformers are canceled out.

Given the bus voltage V) of the generator, the generator current is then

Vi
Il - Zline
27 + ‘K(”)‘z + Zload
The transmission line current is
I Vi
12 - K* (I’l) - * Zline
K (n) <2Zl + K(n)[2 + Zload)

The load current is



116 Draft: EE 135 Notes April 30, 2024

i.e., the effects of stepup and stepdown transformers cancel each other and the load current is equal to the
generator current. The load voltage is

Zload

27; + gy + Ziowd

Vi = Zioadls = Ziowdi = Vi

Hence V3 relates to V| according to the voltage-divider rule where V] is the voltage drop across the series

of impedances 27; + Liine 4 Zioad and V3 is the voltage drop across Zjoaqg- The complex power delivered

) K (n)]?
to the load is

2
Vi Viine|*
Vi3l = Zioad- 5 7 = Zioad" [Vine] 3
A Ky T Aoud 322 + s + Zioua

]

Simplified per-phase diagram for external behavior. In Example 3.6, only the transmission line cur-
rent I, that is in between the pair of transformers depends on the connection-induced phase shift e/ /6 in
the complex transformer gain K(n). Outside the pair of transformers, the driving point impedance V; /I,
the generator current /;, the load current /3, the load voltage V3, and the power delivered to the load do
not. They depend only on |K(n)|>. This is the case even if we use the more detailed IT-model of the
transmission line instead of the short-line model used here. Indeed, suppose the series impedance Zji,e
in Figure 3.26(b) is replaced by the matrix given by (2.9) or (2.13)(2.14) as in Figure 3.27(a). Then the

+ ¥~
+ ¥~
+ Y~

vBEl (W) |8B» vBE |l EBv

1:\/§n \ ) \/gn:l 1:\/511

transmission
line

(a) Transmission line IT-model

transmission
line

(b) Equivalent circuit without connection-induced phase
shift

Figure 3.27: I1-model of transmission line in place of the series impedance Zjj,e model in Figure 3.26(b).

voltage and current (V,I) on the left is related to the voltage and current (V',I’) by

VK@) e ] _
[I|K<n>|—1ef”/6] B

] -

C D

C D

B} _ [ V' |K (n)| ™/ }
Vd |K<I’l>|_1 ejﬂ?/6
B} | [I/V,’K(n)“]
[K(n)|
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Therefore the external behavior is as if the connection-induced phase shift e/m/6 is absent, as shown in
Figure 3.27(b). This motivates a simplified per-phase diagram for external behavior that ignores all the
connection-induced phase shifts of transformers as long as every path contains stepup and stepdown trans-
forms in pairs and wired in opposite directions. This is generally true for radial networks in practice where
no transmission lines nor transformers are in parallel. Radial networks are a special case of a normal sys-
tem that we discuss next.

3.4.2 Normal system

A system is called normal if, in the per-phase equivalent circuit, the product of the complex ideal trans-
former gains around every loop is 1. Equivalently, on each parallel path,

1. the product of ideal transformer gain magnitudes is the same, and

2. the sum of ideal transformer phase shifts is the same.
Normal systems have a normalization that greatly simplifies analysis which we will discuss in Chapter
3.5. The following example motivates such a system.

Example 3.7 (Loop flows). Consider a generator and a load connected by two three-phase transformer
banks in parallel forming a loop as shown in Figure 3.28(a). The transformer in the upper path is charac-

gen

? % load
1

(a) Transmission line IT-model (b) Equivalent circuit

Figure 3.28: Two buses connected in a loop with two parallel transformers.

terized by a series impedance and a complex gain K;. The transformer in the lower path is characterized
by the same series impedance and a possibly different complex gain K>. Suppose line-to-neutral voltage
of the generator bus is Vgep, the series impedance Z; of the transformer and the load impedance Zjy,q in the
per-phase equivalent circuit are given, as shown in Figure 3.28(b). Derive the currents /j,q, I { ,Ié in terms
of Vgen, 2, Zioad- Discuss the implications when

1. K> = K;. This is the case if both transformer banks are Y'Y -configured.
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2. K» =K, ¢/, This is the case if the upper transformer bank is Y'Y -configure with a voltage gain of n
but the lower transformer bank is AY -configured with a voltage gain of n/ V3and O =1 /6.

3. Ky =k-Kj, k> 0. This is the case if both transformer banks are YY-configured but with different
turns ratios.

Solution. We cannot directly apply the shortcut (3.14) and (3.15) to refer the impedances Zj,,q and Z; to
the primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s
and Ohm’s laws.

We have five unknowns currents fioaq, 11, 15,11, I>. The five equations that relate them are
Iload = 1 { +Ié
Zicadlioad = Ki- (Vgen -7 Il)
Zioadlioad = Kz- (Vgen -7 12)
I.
I = -2 ji=12

J T
K]

where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
equations express current gains of the transformers. Eliminating fioaq, 11,15, we have

L o)
Zioad (K_ik + K_;) = K- (Vgen - lel)

I I
Zload< ! + _2) = K- (Vgen - ZIIZ)

Ki K
or
|:Zl+Zload|K1|_2 Zload(Kl K;)_1:| . |:11:| _ |:Vgen:|
Ziad(K{ K2) ™' Zi+ Ziwd|K1 |72 |2 Veen
Inverting the matrix, we obtain
V.
11 — gen_2 — al
Zl + Zload (|K1| + ’K2’ )
Vaen
12 = £ X0%)
Z) + Zioaa (|K1] 72+ |K2|72)
where
Zload Kl _KZ
al — 1 —|— - =
Z, K |Kx?
7 K, —K
w = 1+ load 2 1

7 |Kil* K>
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Hence
gl Vien @
K Z; + Zioad (|Ki| 72+ |K2|72) KT
po ko Vo o
K; Z + Zload(|Kl|72+|K2|72) K;
and

Vgen
Zl + Zload (’Kl ’_2 + ‘KZ‘_Z)

1 1 1
howd = L1+, = : K_i“—i_K_;

where we have used

o o 1 Z K| — K 1 Z K, — K 1 1
IR (_*+ g K1 22)+(_*+ g K2 - 12> -1,
Kl K2 K1 Z; |K1| |K2] Kz Z; |K1| |K2] Kl K2
1. When K> = K|, then ot = o = 1 and
§-p - Ven o KiVie
71 + Zioad (21K1172) K} \K112Z; + 2Zioad
and
Load 5 Veen 2K = Iy-2K, (3.18)
|K11°Z; + 2Zioaa
I
2. When K, = K, ¢/%, then, fori = 1,2,
\% o \%
I = T e = T (o Ki)
Z) + Zioad (21K1|7%) K; \K11°Z; + 2Z10aa
Since a1 K} + Ky = K1 +Ky, = K (1 —I—eje) and |K;| = |K;|, we have

Vgen
K112Z; + 2Z10aa
Hence I,5,q reduces to the load current in (3.18) when the transformer gains are equal with 6 = 0.

When the transformer gains K; and K, are not in phase, (1 +e/ 9) can be much smaller than 2 and
the current |1j,5q| that enters the load can be much smaller than the currents ]Il/ ,i=1,2. In particular

Noad '<1+€j6>K1 = 10<1+€j9>K1

[loaal _ |1 +¢7°] |hoaa| _ [1+¢7°]
1 |ou | 15 |0
To appreciate the issue, take K; = 10, K, = 10 LI Veen = 8 KV, Z; = j0.05Q, Zjpaq = 800£0°€2.
Then
I = 3,754.99 / —164.85 A
Ié = 4,527.24 Z14.88 A
hoad = I1+1, = 772.50 Z13.57 A
I I
| 1"/“" — 2057%, 1°,ad| — 17.06%
4 15
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Hence |I{| and |I}| are much larger than |/joaq|. The interpretation is that most of the current loops
between the two transformer banks without entering the load. This is undesirable because the cir-
culating current serves no purpose and heats up the transformers. The problem arises because the
connection-induced phase shifts in the two parallel paths are different. In practice we will not par-
allelize these transformers.

The complex generation power and load power are respectively

Seen = Veet(ll +h)* = 182.98 £70.97° MVA
Stioad = Zioad|lioad)® = 59.68 Z0° MVA

Again the apparent load power is a small fraction of the apparent generation power. However, since
the transformers have zero resistance, their real powers are the same:

Pyen = Pload = 59.68 MW

. When K, = k- K;, we have

K Vgen

I = 0
: Ki?Z) + (1+k2) Zioaa
I = K Vgen %
2 ’K1’2Z1 + (1+k72) Zioad Kk
Load = £ (1+-)K
load |K1’2Z1 + (1—|—k72) Zload ( k) !
Hence
hoaa| _ 14K Jhoad 1tk
1] |ou 5] ||

If we take Kj = 10, K3 = 20, Vigen = 8 kV, Z; = j0.05 Q, Zjoaa = 80020° Q. Then

I = 3,260.76 £76.40 A

I, = 3,213.39 Z-86.58 A
hod = I+ = 95923 2-229A
I Lo
owal - _ 59,4995, Mosal _ 99 g5,
1] 1

Again |I{| and |I}| are much larger than |Ij,q| and there is a large loop flow between the transformer
banks. This time the problem arises because the voltage gains in the two parallel paths are different.
In practice we will not parallelize these transformers.
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3.5 Per-unit normalization

In this section we describe a normalization method that will simplify the analysis of balanced three-phase
systems. For a normal system where all connection-induced phase shifts of transformers can be ignored
in the per-phase equivalent circuit, the system after normalization will contain no transformers if there
is no off-nominal transformer in the original system. For general systems, normalization will typically
still simplify the equivalent circuit and per-phase analysis, but the system after normalization may contain
ideal transformers with real or complex voltage gains. We are usually interested in four types of generally
complex quantities: power S, voltages V, currents /, and impedances Z and functions of these quantities.
We will choose base values for these quantities and define the quantities in per unit as:

actual quantity

quantity In p- == e value of quantity

The base values are chosen to be real positive values and have the same units as the corresponding actual
quantities. For example a power base Sp will be in unit VA when it serves as the base value for complex
power, W for real power, var for reactive power. Hence the per-unit quantities generally have different
magnitudes from, but always the same phase as, the corresponding actual quantities. Furthermore they
are dimensionless. The base values are chosen so that the per-unit quantities behave exactly as the actual
quantities do, as we now explain.

Consider a power network that consists of multiple areas connected by transformers. It represents
either a single-phase system or the per-phase equivalent circuit of a balanced three-phase system. The
nominal voltage magnitudes are the same within each area and those in neighboring areas are related by
transformer turns ratios. It is common to choose the power base value S;p for the entire network and the
voltage base value Vg for one of the areas, say, area 1. For example the base value Vip can be chosen
to be the nominal voltage magnitude for area 1 and the base value S can be the rated apparent power of
one of the transformers in area 1, so that its rated voltage is 1 pu and the rated power is 1 pu. The base
values for all other quantities in the entire network are then calculated from these two values (Sg,Vip) so
that these base values satisfy:

¢ Kirchhoff’s laws within each area;
* ideal transformer gains across areas;

* three-phase relations.

We derive in Chapter 3.5.1 the base values within area 1 and in Chapter 3.5.2 the base values of other areas
connected by transformers to area 1. In Chapter 3.5.3 we describe the normalization of off-nominal trans-
formers. In Chapter 3.5.4 we describe how to calculate base values of three-phase quantities in a balanced
three-phase system. In Chapter 3.5.5 we summarize the procedure for per-unit per-phase analysis.

3.5.1 Kirchhoff’s and Ohm’s laws

Consider a single-phase system or the per-phase equivalent circuit of a three-phase system. Start with area
1 for which we have the power base Sp in VA (or W or var for real and reactive powers respectively) for
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the entire network, and the voltage base Vg in V. The base values I1g,Z;p of currents and impedances
respectively are calculated as:

Sk V2
Lip = —> A, Zip = L O (3.19)
1B Vip 1B Sx

so that the base values satisfy the Kirchhoff’s laws:

Vi = Ziglip 'V, Sg = Viglip VA
Since
Vi Zi St WiIf
Vig Zighp’ Sp Vislip

the per-unit quantities satisfy Kirchhoff’s laws as the actual quantities do:

leu = leullpu7 Slpu = leulikpu

We can therefore perform circuit analysis using the per-unit quantities instead of the actual quantities. We
can convert the result of the analysis back to the original quantities by multiplying the per-unit quantities
by their base values.

Extensions to other related quantities are straightforward. For example Sp is also the base value for
real power in W and reactive power in var so that

Py 01
57 leu =

P
1pu Sg

and S1py = Pipy + jQ1pu- Zp is the base value for resistances and reactances so that

R X

R — X
Ipu 715 ; lpu 715

and Zipy, = Ripu + jXipu. Similarly Y15 :=1/Zip in Q! is the base value for admittances Y} := 1/Z, =
G — jBin Q' as well as conductances G and susceptances B also in Q!

3.5.2 Across ideal transformer

Consider now a neighboring area, say, area 2 that is connected to area 1 through a transformer. We choose
the bases for different sides of the transformer in a way that respects the transformer gains. Consider the
circuit in Figure 3.29(a) where areas 1 and 2 are connected through a transformer with a voltage gain
K(n). If it is a single-phase system then K (n) = n, the reciprocal of the turns ratio. If it is the per-phase
equivalent of a balanced three-phase system then K(n) may be complex if the transformer is not in YY or
AA configuration. Given the bases (Sg,Vip,I15,Z1p) for area 1 calculated in Chapter 3.5.1, the bases for
the other side of the transformer are calculated according to:
Iip

VZB = |K(l’l>|VlB V, IQB = |K(n)| A, ZzB = |K(n)]2Z13 Q (3.20)




Draft: EE 135 Notes April 30, 2024 123

Ipu

1pu = 2pu

(a) In standard unit (b) In per unit

Figure 3.29: Per-phase equivalent circuit of balanced three-phase transformers with gain K (n).

The base power value remains Sgp = Viglig = Voplyp for all areas since the power gain across an ideal
transformer is 1. Even though K(n) may be complex all base values remain real positive numbers.

Referring to Figure 3.29(a), the per-unit quantities (leu,i1pu) at the input and the per-unit quantities
(Vapu; Iopu) at the output of the ideal transformer satisfy (a :=1/n)

. Vi Vo |K(n) /K

View = — = Lk SVA R JZK(n)

e Vig K(n) Vap 2pu €

- I K*(n)I .

foe = L KWL ik
Lip K (n)|I25

This also implies that the per-unit power §1pu = leuff‘pu = VZPUI;pu = Sopu. If ZK(n) can be taken as
zero then on the input side of the transformer, (V)py, /] 1pu,§1pu> can be replaced by (Vapu,lopu; Sopu)s i-€.,
the voltages, currents, and power remain the same, in per unit, when crossing an ideal transformer. Within
each side of the ideal transformer the per-unit quantities (Sipu, Vipu,Iipu,Zipu) satisfy the Kirchhoff’s laws
as explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified into that in Figure
3.29(b) where the ideal transformer has disappeared. The voltage gain angle /K (n) = 0 if (i) the system
is single phased, or (ii) it is balanced three phased with transformers in Y'Y or AA configuration, or (iii) it
is a normal system where the connection induced phase shift ZK(n) can be ignored for external behavior.
Hence ideal transformers and connection-induced phase shifts can be omitted in a normal per-phase system
if we use the simplified per-phase diagram and the per-unit normalization. This simplified per-phase per-
unit diagram is called an impedance diagram. Otherwise the per-unit circuit will contain a phase-shifting
transformer with voltage gain e/“X("); see Example 3.9.

We proceed in a similar manner to calculate the base values (Sg, Vi, lig,Zip) in each neighboring area
i, until all connected areas are covered. It can be easily checked that the per-unit quantities in each area
satisfy the Kirchhoff’s laws, as long as the per-unit quantities in area 1 satisfy the Kirchhoft’s laws and
those in other areas respect transformer gains. This is where system normality is important: on each
parallel path in its per-phase equivalent circuit, (i) the product of ideal transformer gain magnitudes is the
same, and (ii) the sum of ideal transformer phase shifts is the same. As discussed above these properties
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prevent loop flows between transformers, as illustrated in Example 3.7. Note that in Figure 3.28(b) of that
example, the secondary-side voltages of the two ideal transformers are the same but their primary-side
voltages are different when K> = K e/® with 6 # 0. The first property also ensures that the calculation
(3.20) of base values across areas is consistent, i.e., does not depend on the order in which the areas are
chosen for calculation; see Exercise 3.13.

Example 3.8 (Single-phase system). Consider the single-phase system in Figure 3.30 where the voltage
source has a nameplate rated voltage magnitude of v V and a nameplate rated power of s VA. Calculate

w0 BE G |- o

Figure 3.30: Single-phase system for Example 3.8 with a rated voltage magnitude of v in V and a rated
apparent power of s in VA.

the base values for the system.

Solution. Let the base value for power be Sp := s in VA for the entire system and the base value for voltage
in area 1 (where the voltage source is) be V g := v in V. Then the base values for currents and impedances
in area 1 are respectively:

2
Lig := $ A and Zp := v Q
v s

The base values in area 2 connected by the first transformer with a voltage gain n; are:

VZB = I’l1V13 = I’l]vV
IIB N
hp = — = — A
ni nv
2
2 (v1v) , 1 s 4
ZZB = nlle = .Q., YZB = = = ) Q
s Zop (viv)
The base values in area 3 connected by the second transformer are:
Vap ni
Vap i= — = —v V
nj na
ny s
Lp = mbhp = —- A
nv
1 n? v? 1 n3 s
. 1 . 2 -1
Zyp = Sl = 5 — Q, ap == —— = 55 Q
n2 n2 S Z3B n1 \%
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3.5.3 Off-nominal transformer

Power systems employ two types of regulating transformers. The first type regulates voltage magnitudes,
e.g., through variable taps on some of its windings that control the number of turns and hence the voltage
gain. Such a transformer is usually connected at the end of a line to regulate the voltage magnitude at a
node. Its turns ratio may be variable and different from the ratio of the voltage bases in its primary and
secondary areas. The second type regulates phase angle displacement between two nodes. Their voltage
gains may be complex K(n) = pZ¢ where ¢ may be variable and cannot be omitted in normalization.
These transformers are said to be off-nominal. They will not disappear under per-unit normalization but
will appear as a transformer with a different (normalized) voltage gain, as we now explain.

Consider an ideal transformer with a possibly complex voltage gain % =: K(n) as shown in Figure

3.31(a). Suppose the ratio of the voltage base in area 2 to that in area 1 is % =: p. Since

the transformer is equivalent to two ideal transformers in series with voltage gains p and K(n)/p respec-
tively as shown in Figure 3.31(b). Since the first transformer has an voltage gain of p, it disappears in
per-unit normalization and hence the per-unit equivalent circuit of the original transformer has a gain re-
duced by p as shown in Figure 3.31(c). For instance for a phase shifting transformer with voltage gain
K(n) = p£¢ its voltage gain in the per-unit circuit will be 1£¢.

Example 3.9 (Normalization with connection-induced phase shifts). Consider a balanced three-phase
ideal transformer in AY or YA configuration with a complex voltage gain K(n). Let the bases for one
side of the transformer be (Sp,Vip,l18,Z15). Choose the bases for the other side according to (3.20).
Suppose we cannot ignore the connection-induced phase shift. Then the per-unit equivalent circuit of the
ideal transformer will be an off-nominal phase shifting transformer with a gain |§EZ;\ = /K(n) as shown

in Figure 3.32. O

As we will see in Chapter 4.2 a nonideal transformer, whether in standard unit or per unit, can be
represented by a phase impedance matrix for power flow analysis.

3.5.4 Three-phase quantities

In Chapters 3.5.1-3.5.3 we explain how to choose bases for a single-phase system. They are also applica-
ble to the per-phase equivalent of a three-phase system where the voltages and currents are line-to-neutral
voltages and line-to-neutral currents. Suppose the base values (S;;p ) Véq’ i ;¢,Z;¢) for a single-phase sys-
tem are given. When single-phase devices (sources, loads, impedances, transformers) are connected to
form a balanced three-phase system, three-phase quantities are created for which base values need to
be defined. For instance the ratings of a three-phase transformer are always specified in terms of three-
phase power and line-to-line voltages. In this subsection we will derive these base values, in terms of
(S};p , Vl; ¢,II§¢,Z}3¢), in a way that respects three-phase relations. The main issue is to define the meaning
of these base values and the relation they intend to capture in Y and in A configurations.
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Figure 3.31: Normalization of an off-nominal transformer.
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Figure 3.32: Normalization when connection-induced phase shifts cannot be ignored.
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Let (S 19 y19 119 719) denote respectively the power generated or consumed by a single-phase device,
the voltage across and current through the device, and the impedance of the device. We are interested in the
following three-phase quantities. The three-phase power $3? is defined to be the sum of power generated
or consumed by each device in either Y or A configuration. The line-to-line voltages V! and terminal (line)
currents I°? are external quantities. In an ¥ configured three-phase device, a line-to-neutral voltage V'
and a three-phase impedance Z3? are equal to the voltage V!¢ and impedance Z!? respectively associated
with each single-phase device. For a A configured three-phase device V'™ and Z3? are defined to be the
line-to-neutral voltage and the impedance respectively in its Y equivalent circuit. As explained in Chapter
1 these quantities are related to the corresponding single-phase quantities according to:’

3¢ = 3510 Vil = /37/0pin (3.21a)
Ly = 1'? for Y configuration
30 _ an . g
I { Ly —Iq = /37770110 for A configuration (3.210)
1 vie for Y configuration
vy = . -1 3.21c
(\/gef m/ 6) y1ie for A configuration ( )
AL for Y configuration
30 _ g
z { z'%/3 for A configuration (3.21d)

Motivated by the three-phase relations (3.21) we define the base values (qu),Vél,Ig‘p,Vé“,Z;(P) for the
three-phase quantities (53¢, V!, 39, V" 739) in terms of the single-phase base values (S?,Vé‘b,l llg(p,Zéd’)
as follows:

s = 35, vl o= 3y (3.22a)
19 .
124, - Iy o forY conﬁgurat?on (3.22b)
V3 Iy for A configuration
19 .
1% for Y configurat
yin o B y or Y configura '10n (3.220)
(V3) Vg for A configuration
19 .
qu, o ZIfq) for Y conﬁgurat?on (3.22d)
Zg" /3 for A configuration

In light of (3.19) we could also have defined the base values Igd’ and Z;‘p in terms of Sg(p and V]_Ll;l as (see
Exercise 3.14):

3¢ 11\2
30 Sp 30 . (Vp)
1 = , 7z = 3.22¢
B \/§Vl]31 ‘B S;(p ( )

These definitions replace (3.22b) and (3.22d) and are applicable for both Y and A configurations (note that
v}l are different functions of V;P for Y and A configurations).
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With these base values the per-unit quantities satisfy the following relations (see Exercise 3.15):

3 1 3 1

S = S, vl = vy A A (3.23a)
3

B = |w] vl = [ (23)

Therefore in per unit, the three-phase power, voltage, current and impedance equal their per-phase quan-
tities (at least in magnitude). In particular when one says that the voltage magnitude is 1 pu, it means that
the line-to-line voltage magnitude is 1 pu (i.e., equal to its base value V]_LI;l which is \/§Vz;¢ for Y configura-
tion and Vé ? for A configuration), and the phase voltage magnitude is 1 pu (i.e., equal to its base value V]_};Il

which is V; ? fory configuration and (\@)71 VB“P). We sometimes need not specify whether a per-unit

voltage is line-to-line or line-to-neutral, or whether a per-unit power is single-phase or three-phase. In A

configuration the line-to-neutral voltage Vgﬁ is related to single-phase voltage Vp1u¢ according to

, -1
Pin <\/§em/6) yio

In .__

_ _ e—iﬂ?/6 Vp1¢
u _ u
N V) B4

Similarly for line currents ISL? and Igf .

The next example illustrates the calculation of three-phase bases from single-phase bases. It shows
in particular that impedances, including transformer parameters, will have the same per-unit values in
single-phase or three-phase circuits and regardless of ¥ or A configuration.

Example 3.10 (Three-phase system). Consider a single-phase distribution transformer with nameplate
ratings of

* Power rating (1¢): 50 kVA;
* Voltage ratio: 408 V- 120 V;

* Transformer parameter: X; = 0.1 pu, X,,, = 100 pu (referred to the primary).

They are used to build three-phase transformer banks in YY, AA, AY or Y A configurations. Find the per-
unit normalization “induced” by the nameplate ratings and the impedance diagram of the per-phase circuit
in per unit.

Solution. The nameplate-induced base for the single-phase transformer is such that the power rating is
Ipu and voltage rating is 1pu. Hence

10 ._ 19 ._ 0.
Sy = 50kVA, VM =408V, V9 = 120V

Therefore the current bases are

1
o Sy _ SOKVA

1B "= 19
V9~ 408V

1
Jo . Sy _ SOKVA

8 = i = ooy = H66TA
2B

= 122.55A,
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Since § = \V\z /Z, the impedance base for the single-phase transformer induced by the nameplate ratings
is:

<Vlll;p)2 (408V)? (Vzlg ) 2 (120V)?
Zyp =~ = = 333Q, Zp =i = oo = 0290
sk 50kVA sie 50kVA

Hence the actual transformer reactances X; and X, in Q in the single-phase system are:

X, = (0.1)Z;% = 03330, X, = (100)Z,% = 3330

Consider now a three-phase transformer bank obtained from connecting three of these single-phase
transformers. We consider first the base values for the primary side; the base values for the secondary
side can be similarly chosen. What we will find is that if we choose our bases (quﬁ ) thgl,Ig(P,Z;(P) accord-
ing to (3.22), then the impedance diagram of the per-phase equivalent circuit is independent of Y or A

configuration.

Case 1: primary side in Y configuration. From (3.22), the base values of the three-phase power and
line-to-line voltage induced by the nameplate ratings are

S = 380 = 3(50) = 150kVA
Ve = V3% = V3(408) = 706.68V

These three-phase quantities are used as the power and voltage ratings on the three-phase transformer
nameplate. Hence a line voltage of 1 pu corresponds to the rated primary voltage (706.68 V) on the
nameplate. The base values for the terminal currents and impedances are:

3oy . 4lo 3oy . Slo

L = L = 122.55A, Zig = Zjg = 3.33Q

It can be checked that (SZ‘P , Vll;l,lg(p , qu’) as defined indeed satisfy three-phase relations:

3 2
por _ Sy v _ (Vg)
1B - ’ 1B - 3

V3VIL 3

Since ngy = leg, X; = 0.1pu and X,, = 100pu as before for the three-phase transformer.

Case 2: primary side in A configuration. From (3.22), the base values of the three-phase power and
line-to-line voltage induced by the nameplate ratings are

S = 38 = 3(50) = 150kVA,  Viy = vi? = 408V
The terminal current and the impedance bases are:

16
z 3.33
By = V3L = V3(12255) = 212.26 A, 7zt = % - === 1ne
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To convert the transformer circuit model in A configuration to its equivalent Y configuration, the trans-
former reactances are reduced by a factor of 3, i.e., X/ = X;/3 and X, = X,,/3. Hence the transformer
reactances in pu are:

XY X,/3 X

xyr .= L = L - L — 01 pu
pu 70 793 T Zle
1B IB/ 1B
XY X,,/3 X,

Xppu = —m = n/3 X 100 pu

3¢ 19 19
Zip Zig/3 Zip
as expected.

In summary, with the three-phase base values defined in (3.22), the transformer reactances X; and X,
remain the same in pu regardless of how the single-phase transformers are connected into a three-phase

transformer bank. The impedance diagram of its per-phase circuit is shown in Figure 3.33. O]
I Ipu - I2Pu
o—»— X, »—o
+ +
v " X g Vzpu
o— —o

Figure 3.33: Impedance diagram of a three-phase transformer bank.

3.5.5 Per-unit per-phase analysis

Consider a balanced three-phase normal system. Recall that the nameplate ratings of three-phase trans-
formers are specified in terms of their three-phase power and line-to-line voltages. The procedure for
per-unit per-phase analysis is summarized as follows:
1. For a single-phase system, pick a power base S};p for the entire system and a voltage base Vll% in one
of the areas, e.g., induced by the nameplate ratings of one of the single-phase transformers.

2. For a balanced three-phase system, pick a three-phase power base S?;P and line-to-line voltage base
Vll}g induced by the nameplate ratings of one of the three-phase transformers in area 1 (choose either
the primary or secondary circuit as area 1). Then choose the power and voltage bases for the per-
phase equivalent circuit of the balanced three-phase system according to (3.22a):

Vll
and Vlqu) = 1B

3
Sl‘p = g
V3

B 3

Sllf will be the power base for the entire per-phase circuit.
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3. Calculate the current and impedance bases in that area by:

2
19 vis)
113 =B and ZlB =
1¢ Slq)
1B B

4. Calculate the base values for voltages, currents, and impedances in areas i connected to area 1 by
the magnitudes n; of the transformer gains (assuming area 1 is the primary side of the transformers):

1 1 1l 1l 1 — 2
Vil = v vl = vy I = —Ip, Zip = niZip
4
Continue this process to calculate the voltage, current, and impedance base values for all areas.
5. For real, reactive, apparent power in the entire system, use Sllf as the base value. For resistances and

reactances, use Z;p as the base value in area i. For admittances, conductances, and susceptances, use
Yip := 1/Z;p as the base value in area i.

6. Draw the impedance diagram of the entire system, and solve for the desired per unit quantities.

7. Convert back to actual quantities if desired.

3.6 Bibliographical notes

There are many excellent textbooks on basic power system concepts and many materials in this chapter
follow [1]. Some of the materials on per-unit normalization, e.g., off-nominal regulating transformer
in Chapter 3.5.3, follow [2]. [8] describes a rigorous approach that treats per-unit normalization as a
similarity transformation of a dynamical system in the time domain. The per-unit normalization presented
in this chapter represents the steady-state of the per-unit dynamical system of [8].

3.7 Problems

Chapter 3.1.

Exercise 3.1 (T model of transformer). For the T equivalent circuit of transformer in Figure 3.34, show
that the transmission matrix 7 is given by

Vil _ [a(l+zpym) azs(1+2pym) +nzp| [V (3.24)
I aym n+azsym L '

/

Hence if y,, = 0 then

] = o "] [

which is the same as the transmission matrix 7" in (3.7).
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nT

Figure 3.34: Example 3.1: T equivalent circuit of transformer with n := N, /N; and a := N; /N;.

Exercise 3.2 (T model of transformer). Given the primary voltages and primary currents (Vi, ;) and
(Voe, Ipe) of a short-circuit and open-circuit tests respectively, derive (3.6), reproduced here:

1\ 1
Ve = (Zp + ( m+ 2 ) ) I, Voo = <Zp + _) Ioe (3.25)
a=zg Ym

from (3.4), reproduced here:

Nonideal elements: Vi = zph +V1, I, = yme Vo = 2L+ Vs (3.26a)
N N> . Ny 2

Ideal transf : Vo = =V, L = — (-] 3.26b

eal transformer 2= 5 " 2=, (h —1In) ( )

where the series impedances

Exercise 3.3 (Simplified model). Consider the transformer model in Figure 3.5 with z; =z, + a*z, and its
transmission matrix 7" in (3.7), reproduced here

Vil _ (a(l+zym) nz| |V2
= 627

/

T

This question shows that when the shunt admittance matrix y,, is small compared with the series admit-
tances z;, T is a good approximation of 7', the transmission matrix in (3.24). Let € := a*Zgym.

1. Show that their difference is

’\_ o a _an
T-T —8[0 _n}

2. Suppose z, = Nzy = N(ry +1ix,) for some real number 1 > 0 with ;> 0 and x; > 0, y,,, = —ib,, with
by > 0, and |e| < 1. Show that

|7 7]

< le] < 1
7]

where [|A|| denotes the sum norm ||A|| :=¥; ;|A;;|.
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Exercise 3.4 (Unitary voltage network). Show that the T equivalent circuit described by

{Vl} _ {a(l%—zpym) azs(1+zpym)+nzp} {VZ} (328)
Il aym n+azsym 12 '

T

is equivalent to the transformer model I = (MY,y, M)V given by (3.11).

Exercise 3.5 (Unitary voltage network). Show that, instead of the numbers Ny, N, of turns of the primary
and secondary windings respectively, the admittance matrix MY,ynM in (3.11) can equivalently be written
in terms of the turns ratio a := N /Ny:

YpYs 1+ azym/yS —a
azym+a2yp +ys —a a2(1+ym/yp)

MYyynM =

Chapter 3.2.

Exercise 3.6 (Y A configuration). Consider the three-phase transformer with Y-configured primary side on
the left and A-configured secondary side on the right as shown in Figure 3.35 with a voltage gain n. Show
that the voltage gain Viecondary/Vprimary 18 K(n) := \% e im/6,

efin/6

ote that the voltage gain K(n) := = is equal to the inverse of the voltage gain Kay(1/n) for a
Note that the vol in K \% i 1 to the i f the vol in Kay(1/n) f

AY -configured transformer, i.e.,
1
KAy(l / I’l)
This means that this transformer is identical to a AY transformer with its primary and secondary sides

switched. It is unlike the voltage gain of the Y A-configured transformer with connectivity shown in Figure
3.13(b).

K(n) =

c b b’

Figure 3.35: Exercise 3.6: Three-phase transformers in YA configuration.
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do — oa’ KAY (l’l)
/_/%
I / e . I

Z,/3 > - ——0

+ + +

. My 881w

bo b 5 - : f °
Co— c’ 1\/§n
(a) AY configuration (b) Per-phase circuit

Figure 3.36: Model of three-phase transformers in AY configuration and its per-phase equivalent circuit.

Exercise 3.7. Figure 3.36 shows a model of balanced three-phase transformers in AY configuration and
its per-phase equivalent circuit. Show that the mapping from (V,,s, 1) to (Vyu,1s,) is given by

i) - men” ] 7]

where Kpy (n) := V3n e/7/% and Yo := —j/ X

Exercise 3.8 (Referring shunt admittance in one side to the other). Show that the transmission matrix for
the circuit in Figure 3.20(a) is the same as that in Figure 3.20(b) provided that the relation (3.14b) between
shunt admittances Y, and ¥; holds.

Exercise 3.9 (Transmission matrix). Consider a balanced three-phase ideal transformer with a complex
gain K(n) connected to a balanced three-phase series impedance Z; and a balanced three-phase shunt
admittance Y on the secondary side. The per-phase equivalent circuit is shown in Figure 3.37(a). Show
directly that transmission matrix of the circuit in Figure 3.37(a) is the same as that in Figure 3.37(b)
provided the relation (3.14) between impedances/admittances (Z,,Y,) and (Z;,Y;) holds.

Exercise 3.10 (Driving-point impedance). Refer to Figure 3.23.

1. Show that the driving-point impedance V;/I; on the primary side is the same in both circuits in
Figure 3.23(a).
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v, Ko | v ] v
[2

K(n) vy

ideal
transformer

(a) (Zy,Y;) in the secondary (b) (Z,,Y,) in the primary

Figure 3.37: Referring (Z;,Y;) on the secondary to the primary for an ideal transformer with a complex
gain K (n).

2. Show that the driving-point impedance V; /I, on the secondary side is the same in both circuits in
Figure 3.23(b).

Exercise 3.11 (Driving-point impedance on primary side). Suppose the secondary sides of the (equivalent)
circuits in Figure 3.37 are connected to an identical load Zjo,q so that V, = Zjaq 2 in both circuits.

1. Show that the driving-point impedances on the primary side of the circuit in Figure 3.37(a) is:

Vi 1 1
no_ Zo4 — (3.29a)
I K(n)|? ( Y, +2Z,, )

oad

The term in the bracket is the Thévain equivalent impedance in the secondary circuit, seen from the
output of the ideal transformer.

2. Show that the driving-point impedances on the primary side of the circuit in Figure 3.37(b) is:

Vi 1

- 7, + _ (3.29b)
I Y, + [K(n)|2Z,),

3. Show that (3.29a) and (3.29b) are equivalent provided that (Z,,Y,) and (Z,,Y;) satisfy (3.14).

Exercise 3.12. Consider the balanced three phase system in Figure 3.38 where the line-to-line voltage of
the three-phase generator in A configuration is Vge,. The 3¢ transformer consists of single-phase trans-
formers in AY configuration. Each single-phase transformer is modeled by a series impedance Z; (and
negligible shunt admittance) on the primary side followed by an ideal transformer with turn ratio n. The
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Vgen A Y (Zline’ . ’%)
1 ‘n transmission line —l

Z | Z load

~

\S}

Figure 3.38: A three-phase generator in A configuration connected to a three-phase AY transformer and
then to a three-phase load in Y configuration through a three-phase AC transmission line.

transmission line is modeled by a IT-model with a series impedance Z; and a shunt admittance Y,,, /2 at each
end of the line. The transmission line is connected to a balanced 3¢ impedance load in Y configuration
with an impedance Zj,,4 in each phase.

1. Draw the equivalent per-phase circuit.

2. Derive the complex power delivered to the load Zj,,q in each phase.

Exercise 3.13 (Bases across transformers). For a normal system, on each parallel path in its per-phase
equivalent circuit, the product of ideal transformer gain magnitudes is the same. Show that this property
allows us to consistently define base values between two neighboring areas using (3.20). (Hint: Show that
around any loop, (3.20) holds only if the product of voltage gain magnitudes around the loop is 1.)

Exercise 3.14 (Terminal current and three-phase impedance bases). Show the definition (3.22b) (3.22d)
for base values I;‘P and qu’ respectively are equivalent to definition (3.22e).

Exercise 3.15 (Per unit properties). Prove the per-unit properties (3.23).

Exercise 3.16 (Caltech ACN: transformers). Figure 3.39 shows the layout of the Adaptive Charging Net-
work (ACN) for electric vehicles (EVs) in a Caltech garage. The Caltech ACN consists of two three-phase
stepdown transformers in AY configuration with A on the primary side. Each of these transformers is con-
nected to an electric panel, to which charging stations and subpanels are connected. Figure 3.40(a) shows
the two three-phase transformers and the two electric panels. Figure 3.40(b) shows the ratings of each of
the three<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>